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Abstract This article presents a type of plate Finite Element (FE) models with adaptive mathemat-

ical refinement capabilities for modeling laminated smart structures with piezoelectric layers or dis-

tributed patches. The p-version shape functions are used in combination with the higher-order

Layer-Wise (LW) kinematics adopting hierarchical Legendre polynomials. Node-Dependent Kine-

matics (NDK) is employed to implement local LW models in the regions with piezoelectric compo-

nents and simulate the global substrate structure with the Equivalent Single-Layer (ESL) approach.

Through the proposed NDK FE models, the electro-mechanical behavior of smart structures can be

predicted with high fidelity and numerical efficiency, and various patch configurations can be con-

veniently modeled through one set of mesh grids. Moreover, the effectiveness and efficiency of the

NDK FE approach are assessed through numerical examples and its application is demonstrated.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electro-mechanical coupling is a reversible process in which an
electrical field causes straining (direct effect), and deformation

causes an electric potential (reverse effect). Such coupling
effects are the main characteristics of various piezoelectric
materials, which have been used as sensors and actuators in
a great variety of smart structures. Piezoelectric components,
either patches or layers, are usually bonded to the surfaces
or embedded in the structures.

The key problem of piezoelectric modeling is to capture the
mechanical interaction between the local piezoelectric devices
and the substrate structures. Given the features of smart struc-

tures with piezo-patches or layers, a direct modeling approach
is to use brick elements, as suggested by Batra and Liang,1

Hauch,2 and Tzou and Tseng.3 However, due to the limitation

of the aspect ratio of solid elements, it is widely agreed that 3D
Finite Element (FE) modeling is comparatively computational
expensive in the simulation of thin piezoelectric components

than using beam and plate elements.
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A wide variety of piezoelectric beam and plate elements
have been proposed. Models in the Equivalent-Single-Layer
(ESL) approach consist of the Classical Laminated Theory

(CLT), First-order Shear Deformation Theory (FSDT), and
Higher-Order Theories (HOT). In such models, the number
of unknowns depends only on the kinematic assumptions.

The works of Wang and Rogers4 and Tzou and Gadre5 are
examples of induced strain models based on CLT for smart
plates and shells with distributed actuators, respectively. How-

ever, the coupled electro-mechanical responses cannot be cap-
tured since the electric potential is not considered as an
independent variable. In the plate element based on CLT
developed by Hwang and Park,6 an electrical Degree of Free-

dom (DOF) was included, and distributed actuators and sen-
sors were both considered. Chandrashekhara and Agarwal7

developed elements adopting the FSDT for plates with both

sensors and actuators without introducing the electric poten-
tial as an additional DOF. In the plate elements adopting
FSDT developed by Batra,8 Suleman and Venkayya,9 and

Huang and Wu,10 the fully coupled electro-mechanical govern-
ing equations were considered. ESL models are intrinsically
easy to formulate, but the interlaminar continuity of transverse

stresses and traction free boundary conditions are not ensured.
The zig-zag models were suggested to overcome these draw-
backs. A historical review of the zig-zag models was presented
by Carrera.11 To formulate efficient electro-mechanical plate

elements, Cho and Oh12 adopted the third-order zig-zag
model.

In the Layer-Wise (LW) approach,13 the number of

unknowns depends on the number of layers. Robbins and
Reddy14 suggested two ESL and two LW displacement-based
FE beam models to investigate the piezoelectric actuation of

laminated beams. It was pointed out that using simplified
stress fields in the composite structure may not well represent
the transverse stresses near the free ends, and the suggested lin-

ear LW beam theory can satisfy the traction-free boundary
conditions. To take advantage of the ESL and LW
approaches, a hybrid ESL-LW plate model, in which ESL
and LW assumptions were respectively used for displacements

and electric potential, was suggested by Mitchell and Reddy.15

Some other novel modeling approaches are also noticeable.
Kapuria16 suggested a beam model with third-order zig-zag

functions combining LW approximation of the electric field.
The continuity of transverse stresses at layer interfaces and
traction-free conditions at free surfaces can be ensured. This

approach was later extended into an electro-mechanical plate
model by the same author.17 Tzou and Ye18 developed a fully
coupled piezoelectric triangle shell element using a layer-wise
constant shear angle theory for laminates with piezoelectric

actuators and sensors. Beheshti-Aval et al.19 presented a
refined sinus three-nodded beam element for laminated beam
structures with piezoelectric layers. This element was reported

to be free of shear locking and can satisfy the interlaminar con-
tinuity conditions and traction-free boundary conditions.

Besides, a series of higher-order plate theories, including the

use of trigonometric series, power series, and Legendre polyno-
mials, were reviewed by Wang and Yang.20 The work of Sar-
avanos and Heyliger21 consists of an extensive review of the

beam, plate, and shell models for piezoelectric modeling devel-
oped till the end of the 1990s. Benjeddou22 compared a variety
of piezoelectric finite element implementations reported in the
literature before the 2000s. The review made by Kapuria et al.23
reports more recent advances in modeling methods for piezo-
electric composite laminates.

In FE models, the refinement of through-the-thickness

assumptions can improve the solution accuracy but often leads
to a significantly increased number of DOFs. A solution to this
problem is to introduce local refinements, which means that

solution accuracy can be improved in critical regions where
local effects occur to reach a compromise between the desired
accuracy and computational expenses. Various approaches for

coupling a local model and a global model have been pro-
posed. The displacement compatibility at global–local domain
interfaces can be enforced using Lagrange multipliers.24–26 The
Arlequin method couples two domains with incompatible

kinematics through Lagrange multipliers in an overlapping
zone.27–29 Blanco et al.30 and Wenzel et al.31 suggested the
eXtended Variational Formulation (XVF) with two Lagrange

multiplier fields to connect non-overlapping domains with dif-
ferent kinematic assumptions. Noticeably, transition elements
that connect plate elements and brick elements were proposed

by Kim et al.32 The basic idea is to use 3D modeling in the
region with piezoelectric devices while simulating the rest of
the structure with 2D elements.

Carrera Unified Formulation (CUF) provides a general
framework to develop refined elements adopting various kine-
matics assumptions. Based on CUF, Carrera and Valvano33

implemented variable kinematic shell models for laminated

structures with embedded piezoelectric components in the
framework. A comprehensive discussion of the modeling of
smart plate and shell structures through CUF can be found

in the work of Carrera et al.34 The Node-Dependent Kine-
matic (NDK) approach, derived from CUF, can be used to
construct FE models with dissimilar nodal kinematics.35,36

The NDK technique is ideal for building concurrent global–lo-
cal FE models since it provides high efficiency and modeling
convenience without ad hoc couplings or special transition ele-

ments. It is also applied to structures with local features such
as patches. Carrera et al.37 applied NDK to nine-node Lagran-
gian elements for structures with piezo-patches.

This article presents refined plate FE models with NDK for

the modeling of laminated structures with surface mounted
piezo-patches. The developed elements are free of shear lock-
ing by using the hierarchical 2D elements.36 Through NDK,

the patched regions can be modeled with refined LW kinemat-
ics, and the un-patched substrate structure adopts simpler ESL
theories. Meanwhile, by using NDK, various patch configura-

tions can be implemented with the same set of mesh grids, and
re-meshing is avoided. This efficient and swift modeling
approach can be used for the optimization of structures with
piezoelectric components. In the following sections, the funda-

mentals of electro-mechanical coupling are first recalled. Next,
the basic idea of CUF and the NDK technique is briefly intro-
duced. Then, the FE formulation with hierarchical shape func-

tion and variable ESL/LW capabilities is derived from the
Principle of Virtual Displacements (PVD). Finally, the effec-
tiveness and efficiency of the presented FE models are demon-

strated through three numerical examples.
2. Electro-mechanical basic equations

In the electro-mechanical coupling, the displacements u = [u,
v, w]T and electric potential / are both treated as primary



166 G. LI et al.
variables. The strains e = [exx, eyy, ezz, eyz, exz, exy]
T can be

derived from the following geometrical relations:

e ¼ bu ð1Þ
where b is the gradient operator matrix:

b ¼
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The electric field, denoted by E = [Ex, Ey, Ez]
T, is the spa-

tial gradient of the electric potential /, which means:

E ¼ �r/ ð3Þ

where r ¼ @
@x
; @
@y
; @
@z

h iT
is the gradient operator.

The electro-mechanical constitutive equations in the e-form
read

r ¼ eCe� eeTE
D ¼ eeeþ evT

E

(
ð4Þ

where r is the stress vector, r = [rxx, ryy, rzz, ryz, rxz, rxy]
T; C

is the mechanical material coefficient matrix; e is the piezoelec-
tric coefficient matrix; D is the electric displacement vector,
and D = [Dx, Dy, Dz]

T; v is the dielectric permittivity coeffi-

cient matrix; the upper tilde symbol indicates that the material
coefficient matrices are defined in the global system. The trans-
formation of the material coefficient matrices from the mate-

rial coordinates (1, 2, 3) to the global coordinates (x, y, z)
has been detailed by Benjeddou et al.,38 Kapuria and Hage-
dorn,39 Kpeky et al.40 and Li.41

3. Multi-layered plate elements with NDK

3.1. Displacement assumptions based on CUF

The geometric features of a multi-layered plate are shown in
Fig. 1. In the framework of CUF, the displacement field of a

multi-layered plate element adopting the ESL kinematics can
be written as

u x; y; zð Þ ¼ Fs zð Þ Ni x; yð Þ uis
s ¼ 1; 2; � � � ; Nexp; i ¼ 1; 2; � � � ; Nshp

ð5Þ

where Fs(z) is the thickness function, whose form is determined
by the plate kinematic assumption; Ni is the element shape

function; uis is the nodal unknown; Nexp and Nshp are the num-
bers of thickness functions and shape functions, respectively.
Fig. 1 A multi-layered plate structure.
For higher-order plate modeling employing Taylor Expansions

(TE), the thickness functions take the following forms:

F1 ¼ 1; F2 ¼ z1; . . . ; Fs ¼ zs�1; . . . ð6Þ
In the LW approach, Fs are defined on the through-

thickness domain of each layer z 2 hkb; hkt
� �

, where hkb and hkt
are the thickness coordinates of the bottom and top surfaces
of the k-th layer, respectively. Instead of the dimensional coor-
dinate z, the non-dimensional coordinate f 2 �1; 1½ � is usually
used in LW model. Thus

uk x; y; fð Þ ¼ Fk
s fð Þ Ni x; yð Þ ukis

s ¼ 1; 2; � � � ;Nk
exp; i ¼ 1; 2; � � � ;Nshp

ð7Þ

where the superscript k indicates that the functions and vari-

ables are for the layer k. Since
dFks fð Þ
dz

¼ dFks fð Þ
df � df

dz
, if we denote

J ¼ dz
df, Eq. (8) can be obtained:

dFk
s fð Þ
dz

¼ J�1 dF
k
s fð Þ
df

ð8Þ

By considering dz ¼ dz
df � df, the integration of Fk

s fð Þ through
the thickness can be written intoZ
Ak

Fk
s fð Þdz ¼

Z 1

�1

Fk
s fð ÞJdf ð9Þ

where Ak is the thickness domain of layer k: z 2 hkb; hkt
� �

.

Normalized Hierarchical Legendre Polynomials (HLPs)
can be used as LW kinematics. The one-dimensional HLPs

read42

Fs fð Þ ¼

1
2
P0 � P1ð Þ s ¼ 1

1
2
P0 þ P1ð Þ s ¼ 2ffiffiffiffiffiffiffi
2s�1
2

q R f
�1

Ps�1 xð Þdx ¼ Ps fð Þ�Ps�2 fð Þffiffiffiffiffiffiffi
4s�2

p s ¼ 3; 4; � � �

8>><>>:
ð10Þ

where Ps is the Legendre polynomial, which possess the char-
acteristics of orthogonality and hierarchy.

The p-version two-dimensional shape functions42 are also

constructed utilizing the HLP as in Eq. (10). Such hierarchical
shape functions are classified into node modes, edge modes,
and surface modes, as detailed by Szabó et al.42

3.2. Node-Dependent Kinematics (NDK)

The NDK is derived from CUF. By relating the definition of
the thickness functions to the specific FE nodes, local kine-
matic refinement can be implemented. The shape functions will

naturally blend the dissimilar kinematics coexisting in an ele-
ment. Such an NDK element can be used to construct a kine-
matic transition zone, which bridges elements with refined

kinematic to those with simpler assumptions, as discussed by
Zappino et al.35,43 and Li et al.36

For a plate element with NDK, the displacement field can

be written into

uk ¼ Fi
sNiu

k
is s ¼ 1; 2; � � � ; Nik

exp; i ¼ 1; 2; � � � ;Nshp ð11Þ
where through the additional superscript i of Fi

s, the depen-

dency of the kinematic assumption on the nodes i is intro-

duced. If the node utilizes ESL kinematics, Fi
s ¼ Fi

s zð Þ; if an
LW model is used on the node instead, Fi

s ¼ Fik
s fð Þ. Through
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Eq. (11), plate elements with mixed ESL and LW nodal capa-

bilities can be constructed.
Piezoelectric components are often local structural features,

for the modeling of which refined LW kinematics are needed.

The NDK technique is ideal for simulating such structures
since it provides modeling convenience and accuracy at con-
trolled computational expenses. As shown in Fig. 2, the shape
functions of the elements in the patched region use LW kine-

matics, and the rest of the shape functions can adopt ESL
assumptions to save the computational consumption. Note
that the sectional definitions (patched or un-patched) are prop-

erties of the elements. This feature enables one to conveniently
explore a great variety of patch configurations (such as place-
ment, in-plane shape, and thickness) with one set of mesh

grids. The optimal patch layout can improve the performance
of the structure regarding actuation efficiency or vibration
frequencies.

In hierarchical plate elements, the higher-order shape func-

tions do not have actual nodes. In this case, the kinematic def-
initions will be dependent on shape functions that share the
same mode featuring position (on a node, an edge, or the sur-

face), as discussed by Zappino et al.43 and Li et al.36
3.3. Variational statement and FNs

In this section, the equilibrium equations of the elements are

derived utilizing the PVD, and the expressions of the stiffness
matrices and load vectors are presented.

For a unit volume dV in the k-th layer, one has

dEp ¼ dW ð12Þ

where d represents the virtual variation; Ep is the potential

energy; W is the external work. Their explicit expressions are

dEp ¼
Z
V

rk
� �T

dek � Dk
� �T

dEkdV ð13Þ
dW ¼
Z
C
d uk
� �T

�pþ d/k �DndC ð14Þ

where V is the volume; C is the external surfaces; �p is the vector

of the external traction; �Dn is the surface charge per unit area;

dC is a unit area on an external surface. Only surface loads are
considered in the present work. In static cases, the inertial
effect is discarded.
Fig. 2 A composite plate with surface-mou
The FE approximations of the displacements and electric
potential and their corresponding virtual variations are

uk ¼ NiF
ik
s u

kð Þ
is

duk ¼ NjF
jk
s du

kð Þ
js

(
ð15Þ

/k ¼ NiF
ik
s /

kð Þ
is

d/k ¼ NjF
jk
s d/

kð Þ
js

(
ð16Þ

where / kð Þ
is is the nodal displacement unknows; Nj, F

jk
s , u

kð Þ
js , and

/ kð Þ
js are the counter parts of Ni, F

ik
s , u

kð Þ
is , and / kð Þ

is , respectively.

For ESL models, u
kð Þ
is ¼ uis, and for LW models, u

kð Þ
is ¼ ukis. The

same rule is also applied to other nodal unknowns. The essen-
tial boundary conditions on the element are

NiF
ik
s �u

kð Þ
is ¼ �u on Cu

NiF
ik
s
�/

kð Þ
is ¼ �/ on C/

(
ð17Þ

where Cu and C/ are the boundaries for the enforced displace-
ments and electric potential, respectively.

By considering the above FE approximations Eqs. (15)–

(17), the geometrical relations Eq. (1), the gradient equations
Eq. (3), and the constitutive relations Eq. (4), Eq. (12) can
be written as

du kð ÞT
js : Kuuk

ijss u
kð Þ
is þ Ku/k

ijss /
kð Þ
is ¼ Puk

js

d/ kð Þ
js : K/uk

ijss u
kð Þ
is þ K//k

ijss /
kð Þ
is ¼ P/k

js

(
ð18Þ

where

Kuuk
ijss ¼

Z
X

Z
Ak

bNjF
jk
s

� �T
Ck bNiF

ik
s

� �
dzkdX ð19Þ

Ku/k
ijss ¼

Z
X

Z
Ak

bNjF
jk
s

� �T
ekT rNiF

ik
s

� �
dzkdX ð20Þ

K/uk
ijss ¼

Z
X

Z
Ak

rNjF
jk
s

� �T
ek bNiF

ik
s

� �
dzkdX ð21Þ

K//k
ijss ¼ �

Z
X

Z
Ak

rNjF
jk
s

� �T
vk rNiF

ik
s

� �
dzkdX ð22Þ

are the basic units or the Fundamental Nuclei (FNs) of the

stiffness matrices; Puk
js and P/k

js are the loads caused by u and

/; X is the in-plane domain of the element. Eqs. (19)–(22)
can be further expanded explicitly, as presented by Li et al.36
nted piezo-patches simulated with NDK.



Table 1 Material properties of composite lamina used on

two-layered square plate.

Parameter Variable symbol Value

Elastic modulus (GPa) E11 132.38

E22, E33 10.756

Poisson’s ratio m12, m13 0.24

m23 0.49

Shear modulus (GPa) G12, G13 5.654

G23 3.606

Dielectric permittivity coefficient v11/v0 3.5

v22/v0, v33/v0 3.0

Note: Vacuum permittivity v0 = 8.85 � 10�12 F/m.

Table 2 Material properties of PZT-4.

Parameter Variable symbol Value

Elastic modulus (GPa) E11, E22 81.3

E33 64.5

Poisson’s ratio m12 0.329

m13, m23 0.432

Shear modulus (GPa) G12 30.6

G13, G23 25.6

Dielectric permittivity coefficient v11/v0, v22/v0 1475

v33/v0 1300

Piezoelectric coefficients (C/m2) e15, e24 12.72

e31, e32 �5.2

e33 15.08

Note: Vacuum permittivity v0 = 8.85 � 10�12 F/m.
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The loads caused by the natural boundary conditions �p and
�Dn are considered through

P�pk
js ¼

Z
Cp

NjF
js
s �pdC on Cp ð23Þ

P
�Dk
js ¼

Z
CD

NjF
js
s
�DndC on CD ð24Þ

where Cp and CD are the boundaries for �p and �Dn, respectively.
The external loads due to the essential boundary conditions in
Eq. (17) are

P�uk
js ¼ �Kuuk

ijss �u
kð Þ
is � Ku/k

ijss
�/

kð Þ
is ð25Þ

P
�/k
js ¼ �K/uk

ijss �u
kð Þ
is � K//k

ijss
�/

kð Þ
is ð26Þ

where P�uk
js and P

�/k
js are the loads caused by �u and �/. Thus, the

FNs of the load vectors can be expressed as

Puk
js ¼ P�uk

js þ P�pk
js ð27Þ

P/k
js ¼ P

�/k
js þ P

�Dk
js ð28Þ

Note that the loads are usually imposed onto different

external boundaries of the element.
By looping over the indexes i, j, s, and s, the element stiff-

ness matrices and load vectors can be obtained in the CUF
assembly procedure for NDK FE models, which has been

detailed by Li.41

3.4. Adaptive mathematical refinement capabilities

Through mathematical refinements on the shape functions and
thickness functions, accurate numerical solutions can be
obtained without modifying the FE mesh. The polynomial

order of the hierarchical shape functions can be gradually
increased, and then the kinematic assumptions in the critical
regions can be refined step by step until a numerical conver-
gence is reached. The desired accuracy determines the levels

of the mathematical refinements. A group of selected variables
(displacements, stresses, and/or electric potentials) at a set of
inspection points can be used to monitor the convergence of

the solution. The relative difference D of a variable Q between
two successive rounds of simulation is

D ¼ Q Mð Þ �Q M�1ð Þ

Q Mð Þ

���� ����� 100% ð29Þ

whereM andM�1 indicate the current and previous rounds of
simulations, respectively. The average of a group of relative

differences Di can be denoted by �d. If d is the prescribed con-

vergence threshold, a refinement procedure stops when �d � d.
Once the refinement on the shape functions terminates, the

local enrichment of the thickness functions in the critical zone
starts.

4. Numerical examples

In this section, three numerical examples are studied. First, the
numerical accuracy of the presented FE models is assessed

through the Heyliger’s plate benchmark. Second, a two-ply
composite plate with two configurations of surface-mounted
piezo-patches is investigated. Next, the presented NDK FE
approach is applied to optimize the piezo-patch layout through

the Genetic Algorithm (GA) to improve actuation efficiency.

4.1. Heyliger’s plates

A two-ply square laminated plate with PZT-4 piezoelectric lay-
ers bonded to the top and bottom surfaces is studied. The lam-
ination of the plate is (90�/0�) (from bottom to top). The length

and width of the plate are a= b = 4 m, and thickness
h= 1 m. The thickness of each piezoelectric layer is 0.1 h,
and each elastic layer is as thick as 0.4 h. Material properties

of the composite lamina and PZT-4 are listed in Table 1 and
Table 2, respectively. Both actuating and sensing cases are con-
sidered. The analytical solutions were provided by Heyliger.44

In both the actuator and sensor cases, the square plate is

supported on the four edges, which means that the following
boundary conditions are applied:

v ¼ 0; w ¼ 0 x ¼ 0; a

u ¼ 0; w ¼ 0 y ¼ 0; b

�
ð30Þ

In the actuator case, the electric potential on the top surface
is

/ x; y;
h

2

	 

¼ /0sin

xp
a
cos

yp
b

ð31Þ

where /0 is the reference electric potential, /0 = 1 V. The
boundary conditions for the electric potential are / = 0 at
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x ¼ 0; a

y ¼ 0; b

z ¼ � h
2

8><>: ð32Þ

In the sensor case, the following distributed pressure is
enforced on the top surface:

p x; y;
h

2

	 

¼ p0sin

xp
a
cos

yp
b

ð33Þ

where p0 is the reference pressure, p0 = 1 Pa.
Single-element models employing p-version shape functions

and HLP kinematics are built to model a quarter of the struc-
ture, and the following symmetric boundary conditions are
adopted:

u ¼ 0 x ¼ a
2

v ¼ 0 y ¼ b
2

�
ð34Þ

When the piezoelectric layers are used as actuators, the
approach through Linear Least Squares (LLS) is adopted to

enforce the distributed electric potential as in Eq. (31). This
LLS approach had been used to introduce distributed temper-
ature onto hierarchical elements by Li et al.45 The FE models

are first enhanced by increasing the plate elements’ order and
then refined using higher-order kinematic assumptions. The
LW kinematic assumptions adopt the HLP, and are denoted

by LDn, where n is the order of the thickness functions in each
layer. The letter ‘‘D” indicates that the formulations are
derived through PVD, and only displacement variables are

considered as primary variables besides the electric potential.
The numerical convergence is monitored by checking the

average relative difference �d of a set of variables obtained in

two successive simulations. For comparison purpose, an FE
model employing brick element C3D20RE (a piezoelectric
20-node solid with reduced integration) in ABAQUS is built.

This solid FE model consists of 40 � 40 � 28 (x � y � z) ele-
ments. Due to the limitation of the aspect ratio of solid ele-
ments, the in-plane mesh of thin layers needs to be highly
refined, leading to a large number of DOFs. Plate elements

do not have such limitations. The p-version elements support
Table 3 Numerical estimation on two-layered square plate with tw

Ni Fs u at 0; b2 ;
h
2

� �
(10�12 m)

w at a
2 ;

b
2 ; 0

� �
(10�12 m)

rxx at a
2 ;

b
2 ;

h
2

� �
(10�2 Pa)

rzz at a
2 ;

b
2

�
(10�3 Pa)

p2 LD1 �34.186 �24.496 312.66 �117.08

p3 LD1 �31.565 �15.162 343.12 �9.174

p4 LD1 �32.220 �15.709 324.38 �16.398

p5 LD1 �32.785 �16.005 326.83 �22.913

p6 LD1 �32.811 �15.963 333.63 �21.929

p7 LD1 �32.807 �15.962 334.45 �21.855

p8 LD1 �32.806 �15.962 334.35 �21.851

p9 LD1 �32.806 �15.962 334.33 �21.851

p9 LD2 �32.785 �14.662 112.38 �15.960

p9 LD3 �32.765 �14.707 111.93 �15.311

p9 LD4 �32.765 �14.707 111.81 �14.630

p9 LD5 �32.765 �14.707 111.81 �14.611

C3D20RE �32.705 �14.863 114.55 �14.861

Heyliger44 �32.764 �14.711 111.81 �14.612
the mathematical enrichment of the shape functions, and thus,
re-meshing can be avoided. Besides, the NDK technique
enables the elements to possess mixed ESL/LW kinematic

capabilities, which can further improve the numerical
efficiency.

The obtained numerical solutions are summarized in

Table 3 and Table 4. By comparing the solutions to Dz given
by p9-LD1 and p9-LD2 in Table 4, it can be concluded that
a linear through-the-thickness assumption of the electric

potential / leads to results far from accuracy since Dz depends
on the gradients of /. From Table 3 and Table 4, it can be

observed that the numerical convergence is achieved (�d � 0)

when the element polynomial degree is 9, and the kinematic
refinement reaches LD5. The numerical results show that,
for both the actuator and sensor cases, the refined single-

element plate model p9-LD5 can give solutions agreeing well
with the references provided by Heyliger44 and those obtained
through ABAQUS 3D modeling. Exceptionally, in the sensor

case, / obtained with the refined plate model p9-LD5 and
ABAQUS is 1/10 of that given by Heyliger.44 D’Ottavio and
Kröplin46 and Carrera et al.47 obtained the same results as
the present solution. Since all the other variables partly

depending on / have been calculated with consistency, this dis-
crepancy was probably caused by the dimensionalization fac-
tors46 or a printing error.48 When the numerical convergence

is achieved, the number of DOFs in the refined hierarchical ele-
ments is only a small portion of those of the ABAQUS 3D
model.

Through-thickness variations of displacements, stresses,
and electric variables for the actuator and sensor cases of the
two-layered square plate are reported in Fig. 3 and Fig. 4,
respectively. The FE solutions obtained through the presented

refined plate models and ABAQUS 3D modeling show a good
agreement with each other for all the variables. However, as
shown in Fig. 3(c), the values of rxx through the thickness of

the lower piezoelectric layer given by Heyliger44 are ten times
the present solution. This second discrepancy was also specu-
lated to be a printing error48 or brought about by the dimen-

sionalization factors.46
o piezoelectric layers as actuators.

; 0
�

rxz at 0; b2 ;
17h
40

� �
(10�3 Pa)

rxy at 0; 0; h2
� �

(10�2 Pa)

/ at
a
2 ;

b
2 ; 0

� �
(V)

DOFs �d
(%)

1297.9 �188.19 0.44197 160

823.07 �161.73 0.42776 240 190.3

73.359 �143.10 0.44332 340 156.3

26.303 �144.35 0.44680 460 30.5

74.855 �145.29 0.44689 600 10.3

75.727 �145.53 0.44684 760 0.3

74.668 �145.52 0.44684 940 0.2

74.648 �145.51 0.44684 1140 0

66.610 �146.12 0.44768 2052 36.6

69.557 �146.04 0.44768 2964 1.3

69.550 �146.04 0.44768 3876 0.7

69.552 �146.04 0.44768 4788 0

70.140 �145.66 0.44773 763748

69.556 �146.03 0.4476



Table 4 Numerical estimation on two-layered square plate with two piezoelectric layers as sensors.

Ni Fs u at 0; b2 ;
�h
2

� �
(10�12 m)

w at a
2 ;

b
2 ; 0

� �
(10�12 m)

rxx at
a
2 ;

b
2 ;

�h
2

� �
(Pa)

rzz at a
2 ;

b
2 ; 0

� �
(10�1 Pa)

rxy at
0; 0; �h

2

� �
(Pa)

/ at a
2 ;

b
2 ;

�2h
5

� �
(10�3 V)

Dz at
a
2 ;

b
2 ;

h
2

� �
(10�13 C/m2)

DOFs �D
(%)

p2 LD1 60.189 279.46 �8.5646 4.5398 3.1253 7.88 �1057.7 160

p3 LD1 58.126 285.80 �8.4215 3.4373 2.5233 7.42 �1588.1 240 14.7

p4 LD1 60.001 296.49 �7.3103 3.8073 2.5597 7.37 �970.34 340 13.9

p5 LD1 60.857 298.40 �7.2464 4.0132 2.5509 7.48 �828.56 460 3.9

p6 LD1 60.891 298.55 �7.3367 3.9977 2.5651 7.51 �873.35 600 1.1

p7 LD1 60.884 298.51 �7.3456 3.9899 2.5673 7.51 �881.34 760 0.2

p8 LD1 60.883 298.51 �7.3441 3.9900 2.5671 7.51 �880.51 940 0

p9 LD1 60.883 298.51 �7.3439 3.9900 2.5670 7.51 �880.37 1140 0

p9 LD2 60.550 299.81 �6.8619 4.8338 2.5828 7.54 172.41 2052 91.0

p9 LD3 60.679 300.28 �6.8666 5.0666 2.5899 7.56 161.20 2964 1.8

p9 LD4 60.679 300.28 �6.8660 4.9817 2.5900 7.56 160.60 3876 0.3

p9 LD5 60.679 300.28 �6.8660 4.9838 2.5900 7.56 160.60 4788 0

C3D20RE 60.814 300.53 �6.8540 4.9830 2.5956 7.43 162.14 763748

Heyliger44 60.678 300.27 �6.8658 4.9831 2.5899 75.6 160.58

Fig. 3 Through-thickness variations of displacement, electric potential, and stresses on two-layered plate with piezoelectric layers

(actuator case).
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4.2. Square plates with piezoelectric patches

Piezoelectric actuators are often used to control the shape of
structures. In this section, two-layered cross-ply composite
square plates with four pairs of surface-mounted PZT-4

piezo-patches are investigated. The plates have length and
width a = b= 200 mm. The thickness of each orthotropic
lamina is 4 mm. The two orthotropic layers have an equal

thickness of 4 mm and are laminated in the sequence of
(0�/90�). The thickness of each piece of piezo-patch is 1 mm.
Two configurations are considered, as shown in Fig. 5. In each

layout, the total in-plane area of the piezo-patches on each side
of the plate is 80 mm � 80 mm. The mechanical properties of
the composite lamina are the same as in Table 1 without con-

sidering the permittivity coefficients. The properties of PZT-4
are given in Table 2.

The plates are simply supported on the four edges as seen in

Eq. (30) and imposed to constant pressure load
p= 100 N�m�2 on the top surfaces. The piezo-patches are
polarized in their thickness directions and are used as

extension-mode actuators in the present work. Two types of
electric load cases are considered: (A) both sides of the
piezo-patches are grounded; (B) the inner sides of the patches
are grounded, and the outer sides are imposed to a voltage that



Fig. 4 Through-thickness variations of displacement, stresses, and electric displacement on two-layered plate with piezoelectric layers

(sensor case).

Fig. 5 Two-layered composite square plates with piezo-patches.
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can flatten the structure. This example focuses on the applica-
tion of piezo-patches in the shape control of structures, so only

displacements are examined.
In the FE model, by making use of the symmetric boundary

conditions as in Eq. (34), a quarter of the structure is modeled

with 5 � 5p-version elements. To simulate the patches accu-
rately, LW models are required in the patched region. For
the rest of the structure, simpler models, such as ESL assump-

tions, can save computational costs. The regions with dissimi-
lar types of kinematic assumptions can be connected through
NDK elements. As explained by Zappino et al.35 and Li et al.,36

this kinematic transition zone requires the width of at least one

element. In the present work, the elements neighboring the
patched region employ LW models to guarantee a proper tran-
sition zone, as shown in Fig. 5. It can be noticed that, in the FE

model for Layout A, more elements are allocated to refined
LW kinematics than those for Layout B.

FE models consisting of 3D brick elements are also built on

commercial platform ABAQUS. For the composite plate,
40 � 40 � 4 (x � y � z) C3D20R (a 20-node quadratic brick
with reduced integration) elements are used; for the piezo-

patches, each piece is modeled utilizing 8 � 8 � 4 C3D20RE
elements. The most significant aspect ratio of the adopted ele-
ments is 10. The resultant 3D model is denoted by C3D20R

(E), whose numerical results are taken as reference solutions.
The load case (Layout A), which imposes constant pressure

on the structure top surface and enforces both sides of the

patches to have zero voltage, is first considered. In the FE
model with p-version plate elements, the refinement of the
kinematic assumptions is first enhanced gradually until
D � 1%. Next, the order of the hierarchical elements is

increased until the numerical convergence is achieved. This
procedure has been demonstrated by Table 5, in which the
deflection at the center of the structure (Layout A) is reported.

The computational time is reported regarding the dimension-
less relative CPU time �t with reference to the least refined
model p2-LD1, whose �t = 1.0. The relative error e is measured

with reference to the results given by the ABAQUS model



Table 5 Deflection at center of plate with piezo-patches Layout A under constant pressure and zero electric potential on both sides of

piezo-patches.

Ni Fs w (10�7 m) DOFs �t D (%) e (%)

p2 LD1 �4.340 1074 1.0 19.6

p3 LD1 �4.479 1734 2.6 3.1 17.1

p4 LD1 �5.164 2659 3.3 13.3 4.4

p5 LD1 �5.176 3849 4.3 0.2 4.1

p5 LD2 �5.351 6507 10.5 3.3 0.9

p5 LD3 �5.369 9165 14.2 0.3 0.6

p5 TE1/LD3 �5.220 7395 12.4 3.3

C3D20R(E)# �5.400 132157 97.1 Reference

Note: # C3D20R for composite laminae, and C3D20RE for piezo-patches.
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C3D20R(E). In Table 5, it can be observed that, e of the result
provided by the model p5-LD3 is 0.6%. It should be noted

that, from p3 to p4, the significant improvement of the solution
accuracy (D = 13.3%) is mainly brought by the newly intro-
duced surface mode shape function. The readers can refer to

Ref. 42 for more details of the hierarchical shape functions.
By means of the same adaptive mathematical refinement

procedure, for the composite plate with piezo-patch Layout

B, the solutions given by different models are reported in
Table 6. Note that TEm indicates that mth-order Taylor
expansions (see Eq. (6)) are employed as ESL-type kinematic
assumptions for the substrate structure without piezo-

patches. The NDK model p5-TE1/LD3 leads to a solution
with comparable accuracy at a reduced number of DOFs
Table 6 Deflection at center of plates with different piezo-patch lay

sides of piezo-patches.

Model Layout A

w (10�7 m) e (%) DOFs

p5-LD3 �5.369 0.6 9165

p5-TE1/LD3 �5.220 3.3 7395

C3D20R(E) �5.400 Reference 132,157

Fig. 6 Central-line deflections of composite square plates with two

potential.
and less CPU time. It can be speculated that if the piezo-
patches cover a smaller portion of the structure, NDK can fur-

ther reduce the computational expenses of refined plate FE
models.

In load case (Layout B), to control the deformation of the

structures, an electric potential e/ that makes the composite

plates flattened is enforced. For Layout A and Layout B, e/
is 51.4 V and 7.4 V, respectively. The obtained central line

deflections along (a/2, y, 0) are reported in Fig. 6. It can be
observed that the results provided by the 3D modeling
C3D20R(E), the fully refined model p5-LD3, and the NDK

FE model p5-TE1/LD3 are in good agreement. The NDK
FE model has a distinct advantage over the 3D FE modeling
outs under constant pressure and zero electric potential on both

Layout B

�t w (10�7 m) e (%) DOFs �t

14.2 �3.853 0.8 9165 12.6

12.4 �3.834 1.3 5985 10.1

97.1 �3.884 Reference 132,157 93.6

types of piezo-patch layouts under constant pressure and electric



Fig. 8 Evolution of piezo-patch layout on composite plates.
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regarding the computational cost (number of DOFs). The
results also show that Layout B has higher stiffness and actu-
ation efficiency compared with Layout A.

4.3. Optimization of piezo-patch layout on two-layered square

plate

The placement of the piezo-patches on composite structures is
explored through the GA. The substrate structure is the two-
layered composite plate in Section 4.2. The optimization aims

to find the optimal layout of four pairs of square piezo-patches
that provides the highest possible actuation efficiency. The
plate is simply supported on its four edges. The patches’ inner

surfaces are grounded, and the outer sides have been enforced
with the voltage of 100 V. The piezo-patches are used as
extension-mode actuators.

A patched composite plate needs to be encoded into a bit-

string chromosome to be used in the GA. The two types of sec-
tions, namely patched and un-patched, are represented by the
Genes 1 and 0, respectively. Thus, a string of the genes results

in a chromosome representing a structure with a specific patch
layout. Fig. 7 demonstrates the GA encoding and decoding of
the problem. The quality of a design is evaluated through the

fitness, which is the deflection at the central point of the com-
posite plate in the present work, and the FE simulation will act
as the fitness function. By means of selection, crossover, and
mutation, the samples gradually evolve generation by genera-

tion based on a randomly generated initial population. For
more information about the GA, the readers can refer to the
work of McCall.49

We postulate that the optimal layout has symmetric fea-
tures. Thus, a quarter of the structure is simulated. The FE
models adopt the NDK plate elements used in Section 4.2.

The NDK model p4-TE1/LD1 is adopted to generate the
structural response since it is computationally cheap and pro-
vides results with fair accuracy. Since the FE model consists of

25 plate elements, the string length of the chromosome is 25.
Each piece of piezo-patch is approximated by four elements
with the patched sectional features. The un-patched region is
Fig. 7 Chromosome encoding and decoding of a patched plate

structure.
modeled with elements employing section definition with only

composite laminae. In the optimization, the crossover possibil-
ity pc = 0.8 and the mutation possibility pm = 0.1. The popu-
lation size is chosen to be 25, and two rounds of optimization
have been conducted.

Fig. 8 shows the deflection of the most efficient sample in
each generation. It can be observed that, within 60–80 genera-
tions, the two populations gradually evolved and converged to

the optimal solution, which has four pairs of patches clustered
in the central region of the structure. This solution is consistent
with the results in Fig. 6 in Section 4.2. This result is theoret-

ically reasonable since, for such a structure under simple sup-
port, the bending deformation mainly occurs in the central
region. A single large piece of patch provides higher bending

stiffness than multiple distributed patches when used as
surface-mounted actuators.

Theoretically, the number of possible solutions is

25
4

	 

¼ 12650. The GA used in the present work has made

it possible to find the optimal solution by analyzing no more

than 2000 samples in total. The used NDK FE models have
contributed to the solution in three aspects:

(1) The structural configuration is conveniently encoded in
the GA since the sectional feature is defined as a prop-
erty of the plate elements.

(2) The modeling of all the samples can use the same set of

mesh grids. Thus, the re-meshing is avoided, and an
automation process can be conveniently conducted.

(3) The numerical efficiency is guaranteed using the hierar-

chical elements with mixed ESL/LW kinematics.

Once the optimal configuration is decided, the same mesh

grids can be immediately used in the detailed simulation
thanks to the capabilities of the hierarchical elements and vari-
able kinematics. This example shows that the NDK FE models

can be conveniently used in the optimization of patched com-
posite structures.

5. Conclusions

This article presents Finite Element (FE) plate models with
Node-Dependent Kinematics (NDK) to model multi-layered
structures with surface-mounted piezo-patches. The suggested
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NDK FE approach provides high numerical efficiency and
modeling convenience. Some conclusions can be drawn as
follows:

(1) The use of hierarchical shape functions and variable
kinematics makes it convenient to efficiently refine the

FE models to achieve high numerical accuracy without
re-meshing.

(2) Through NDK, the region with piezoelectric compo-

nents can be modeled in the Layer-Wise (LW) approach,
and the un-patched composite substrate can be approx-
imated through simple Equivalent Single-Layer (ESL)
models.

(3) With an appropriate kinematic transition, the NDK
technique can help improve the numerical efficiency by
achieving comparable numerical accuracy as full LW

modeling at reduced computational expenses.
(4) Using NDK, smart structures with various patch config-

urations can be conveniently simulated and explored

with one set of mesh grids.
(5) The suggested NDK FE approach is promising to be

used in the optimization of structures with piezoelectric

components.

The present work has been focused on static analyses. The
proposed approach can be applied to vibration control prob-

lems as future work.
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42. Szabó B, Düster A, Rank E. The p-version of the finite element

method. Encyclopedia of Computational Mechanics. Hoboken:

John Wiley & Sons; 2004.

43. Zappino E, Li G, Pagani A, et al. Use of higher-order Legendre

polynomials for multilayered plate elements with node-dependent

kinematics. Compos Struct 2018;202:222–32.

44. Heyliger P. Static behavior of laminated elastic/piezoelectric

plates. AIAA J 1994;32(12):2481–4.

45. Li G, Cinefra M, Carrera E. Coupled thermo-mechanical finite

element models with node-dependent kinematics for multi-layered

shell structures. Int J Mech Sci 2020;171 105379.
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48. Ballhause D, D’ottavio M, Kröplin B, et al. A unified formulation

to assess multilayered theories for piezoelectric plates. Comput

Struct 2005;83(15–16):1217–35.

49. McCall J. Genetic algorithms for modelling and optimisation. J

Comput Appl Math 2005;184(1):205–22.

http://refhub.elsevier.com/S1000-9361(21)00034-0/h0155
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0155
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0155
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0160
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0160
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0160
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0165
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0165
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0165
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0170
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0170
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0170
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0175
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0175
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0175
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0180
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0180
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0180
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0185
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0185
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0185
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0190
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0190
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0190
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0195
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0195
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0195
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0200
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0200
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0200
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0200
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0205
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0205
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0205
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0210
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0210
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0210
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0215
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0215
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0215
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0220
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0220
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0225
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0225
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0225
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0230
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0230
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0230
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0235
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0235
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0235
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0240
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0240
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0240
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0245
http://refhub.elsevier.com/S1000-9361(21)00034-0/h0245

	Multi-layered plate finite element models with �node-dependent kinematics for smart structures �with piezoelectric components
	1 Introduction
	2 Electro-mechanical basic equations
	3 Multi-layered plate elements with NDK
	3.1 Displacement assumptions based on CUF
	3.2 Node-Dependent Kinematics (NDK)
	3.3 Variational statement and FNs
	3.4 Adaptive mathematical refinement capabilities

	4 Numerical examples
	4.1 Heyliger’s plates
	4.2 Square plates with piezoelectric patches
	4.3 Optimization of piezo-patch layout on two-layered square plate

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


