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A paper presents the sampling surfaces (SaS) method and its implementation for the three-dimensional
(3D) exact analysis of functionally graded (FG) piezoelectric laminated plates. According to this method,
we introduce inside the nth layer In not equally spaced SaS parallel to the middle surface of the plate and
choose displacement vectors and electric potentials of these surfaces as basic plate variables. Such choice
of unknowns with the consequent use of Lagrange polynomials of degree In � 1 in the thickness direction
for each layer leads to a very compact form of governing equations of the FG piezoelectric plate formu-
lation. This fact gives an opportunity to derive the 3D exact solutions of electroelasticity for thick and thin
FG piezoelectric laminated plates with a specified accuracy utilizing a sufficient number of SaS, which are
located at interfaces and Chebyshev polynomial nodes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a considerable work has been carried out on the
three-dimensional (3D) exact analysis of piezoelectric laminated
plates. In the literature, there are at least four approaches to 3D ex-
act solutions of electroelasticity for piezoelectric laminated plates,
namely, the Pagano approach, the state space approach, the
asymptotic approach and the sampling surfaces (SaS) approach.
The first approach [1,2] was applied to piezoelectric plates by
Ray et al. [3], Heyliger [4,5], Heyliger and Brooks [6]. The 3D exact
analysis of piezoelectric orthotropic and anisotropic plates based
on the state space approach was carried out in contributions [7–
11]. The asymptotic approach was utilized for derivation of 3D ex-
act solutions for piezoelectric plates [12–15]. The SaS approach
was recently implemented for the 3D exact analysis of piezoelec-
tric laminated orthotropic and anisotropic plates [16].

Nowadays, the functionally graded (FG) piezoelectric materials
are widely used in mechanical engineering due to their advantages
compared to traditional piezoelectric laminated materials. How-
ever, the study of FG piezoelectric structures is not a simple task
[17] because the material properties depend on the thickness coor-
dinate and some specific assumptions concerning their variations
in the thickness direction are required [18,19]. In practice, this im-
plies that we deal here with a system of differential equations with
variable coefficients. Therefore, the first two approaches, i.e., the
Pagano approach and the state space approach cannot be applied
directly to 3D exact solutions for FG piezoelectric plates without
using above specific assumptions [20]. On the contrary, the asymp-
totic approach [21] and the SaS approach can be applied directly to
3D solutions for FG piezoelectric plates because governing differ-
ential equations are obtained through definite integration in the
thickness direction.

The present paper is intended to show that the SaS method can
be also applied efficiently to 3D exact solutions of electroelasticity
for FG piezoelectric laminated plates. According to this method,
we choose inside the nth layer In not equally spaced SaS
XðnÞ1;XðnÞ2; . . . ; XðnÞIn parallel to the middle surface of the plate and
introduce the displacement vectors uðnÞ1;uðnÞ2; . . . ; uðnÞIn and the
electric potentials uðnÞ1;uðnÞ2; . . . ; uðnÞIn of these surfaces as basic
plate variables, where In P 3. Such choice of unknowns in conjunc-
tion with the use of Lagrange polynomials of degree In � 1 in the
thickness direction permits the presentation of governing equations
of the proposed FG plate formulation in a very compact form. Note
that the SaS method has been already applied to the 3D analysis of
elastic and piezoelectric laminated plates and shells [16,22–25].

It should be mentioned that the developed approach with
equally spaced SaS [22] does not work properly with Lagrange
polynomials of high degree because the Runge’s phenomenon
can occur, which yields the wild oscillation at the edges of the
interval when the user deals with any specific functions. If the
number of equally spaced nodes is increased then the oscillations
become even larger. Fortunately, the use of Chebyshev polynomial
nodes [26] inside each layer can help to improve significantly the
behavior of Lagrange polynomials of high degree for which the
error will go to zero as In ?1 .

An idea of using the SaS can be traced back to [27,28] in which
three, four and five equally spaced SaS are employed. These
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contributions describe the SaS concept applied to the approximate
solution of 3D plate/shell problems. For further information the
reader refers to fundamental works [29,30] where the Legendre
polynomials in the thickness direction are utilized. However, the
use of Legendre polynomials cannot provide a uniform convergence
of computational procedures to be developed. On the contrary, the
SaS method leads to a uniform convergence, as shown in Section 5,
that in turn gives an opportunity to derive the 3D exact solutions
for FG piezoelectric laminated plates with a prescribed accuracy
employing the sufficient number of SaS.

The authors restrict themselves to finding five right digits in all
examples presented. The better accuracy is possible of course but
requires more SaS inside the plate body to be taken.

2. Description of electric field

Consider a FG piezoelectric laminated plate of the thickness h.
Let the middle surface X be described by Cartesian coordinates
x1 and x2. The coordinate x3 is oriented in the thickness direction.
The transverse coordinates of SaS inside the nth layer are defined
as

xðnÞ13 ¼ x½n�1�
3 ; xðnÞIn

3 ¼ x½n�3 ;

xðnÞmn
3 ¼ 1

2
x½n�1�

3 þ x½n�3

� �
� 1

2
hn cos p

2mn � 3
2ðIn � 2Þ

� �
; ð1Þ

where x½n�1�
3 and x½n�3 are the transverse coordinates of layer inter-

faces X[n�1] and X[n] (Fig. 1); hn ¼ x½n�3 � x½n�1�
3 is the thickness of

the nth layer; the index n identifies the belonging of any quantity
to the nth layer and runs from 1 to N, where N is the number of lay-
ers; the index mn identifies the belonging of any quantity to inner
SaS of the nth layer and runs from 2 to In � 1, whereas the indices
in, jn, kn to be introduced later for describing all SaS of the nth layer
run from 1 to In.

Remark 1. It is worth noting that transverse coordinates of inner
SaS (1) coincide with coordinates of Chebyshev polynomial nodes
[26]. This fact has a great meaning for a convergence of the SaS
method [23–25].

The relation between the electric field vector and the electric
potential u is given by

Ei ¼ �u;i: ð2Þ

Here, and in the following developments, indices i, j, k, ‘ range from
1 to 3, whereas Greek indices a, b range from 1 to 2.

The electric field vector at SaS of the nth layer is written as
Fig. 1. Geometry of the laminated plate.
EðnÞina ¼ Ea xðnÞin3

� �
¼ �uðnÞin;a ; ð3Þ

EðnÞin3 ¼ E3 xðnÞin3

� �
¼ �wðnÞin ; ð4Þ

where uðnÞin ðx1; x2Þ are the electric potentials of SaS of the nth layer;
wðnÞin ðx1; x2Þ are the values of the derivative of the electric potential
with respect to thickness coordinate at SaS, that is,

uðnÞin ¼ u xðnÞin3

� �
; wðnÞin ¼ u;3ðx

ðnÞin
3 Þ: ð5Þ

Next, we assume that the electric potential and the electric field
vector are distributed through the thickness of the nth layer as
follows:

uðnÞ ¼
X

in

LðnÞinuðnÞin ; x½n�1�
3 6 x3 6 x½n�3 ; ð6Þ

EðnÞi ¼
X

in

LðnÞin EðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð7Þ

where LðnÞin ðx3Þ are the Lagrange polynomials of degree In � 1 ex-
pressed as

LðnÞin ¼
Y

jn–in

x3 � xðnÞjn3

xðnÞin3 � xðnÞjn3

: ð8Þ

The use of (5) and (6) leads to a simple formula

wðnÞin ¼
X

jn

MðnÞjnðxðnÞin3 ÞuðnÞjn ; ð9Þ

where MðnÞjn ¼ LðnÞjn;3 are the derivatives of Lagrange polynomials,
which are calculated at SaS of the nth layer as

MðnÞjn xðnÞin3

� �
¼ 1

xðnÞjn3 � xðnÞin3

Y
kn–in ;jn

xðnÞin3 � xðnÞkn
3

xðnÞjn3 � xðnÞkn
3

for jn–in;

MðnÞin xðnÞin3

� �
¼ �

X
jn–in

MðnÞjn xðnÞin3

� �
:

ð10Þ

This implies that the key functions wðnÞin of the electric field for-
mulation are represented as a linear combination of electric poten-
tials of SaS of the nth layer uðnÞjn .

3. Kinematic description of FG laminated plate

The strain tensor is given by

2eij ¼ ui;j þ uj;i; ð11Þ

where ui are the displacements of the plate. In particular, the strain
components at SaS are

2eðnÞinab ¼ 2eab xðnÞin3

� �
¼ uðnÞina;b þ uðnÞinb;a ;

2eðnÞina3 ¼ 2ea3 xðnÞin3

� �
¼ bðnÞina þ uðnÞin3;a ;

eðnÞin33 ¼ e33 xðnÞin3

� �
¼ bðnÞin3 ;

ð12Þ

where uðnÞini ðx1; x2Þ are the displacements of SaS of the nth layer;
bðnÞini ðx1; x2Þ are the values of derivatives of displacements with re-
spect to coordinate x3 at SaS, that is,

uðnÞini ¼ ui xðnÞin3

� �
; bðnÞini ¼ ui;3 xðnÞin3

� �
: ð13Þ

The following step consists in a choice of consistent approxima-
tion of displacements and strains through the thickness of the nth
layer. It is apparent that displacement and strain distributions
should be chosen similar to electric field distributions (6) and (7):

uðnÞi ¼
X

in

LðnÞin uðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð14Þ
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eðnÞij ¼
X

in

LðnÞineðnÞinij ; x½n�1�
3 6 x3 6 x½n�3 : ð15Þ

The use of (13) and (14) yields a formula

bðnÞini ¼
X

jn

MðnÞjn xðnÞin3

� �
uðnÞjni ; ð16Þ

which is similar to (9). Thus, the key functions bðnÞini of the proposed
laminated plate formulation are represented as a linear combination
of displacements of SaS of the nth layer uðnÞjni .

4. Variational formulation

The extended potential energy of the FG piezoelectric laminated
plate [31] can be written as follows:

P¼1
2

Z Z
X

X
n

Z x½n�3

x½n�1�
3

X
i;j

rðnÞij eðnÞij �
X

i

DðnÞi EðnÞi

 !
dx1 dx2 dx3�W; ð17Þ

W ¼
Z Z

X

X
i

ðpþi uþi �p�i u�i Þþqþuþ �q�u�
" #

dx1 dx2þWR; ð18Þ

where rðnÞij is the stress tensor of the nth layer; DðnÞi is the electric
displacement vector of the nth layer; u�i ¼ uð1Þ1i and uþi ¼ uðNÞIN

i are
the displacements of bottom and top surfaces; u� = u(1)1 and
uþ ¼ uðNÞIN are the electric potentials of bottom and top surfaces;
p�i and pþi are the loads acting on outer surfaces; q� and q+ are
the electric charges on outer surfaces; WR is the work done by
external electromechanical loads applied to the boundary surface R.

Substituting electric field and strain distributions (7) and (15)
into functional (17) and introducing stress resultants

HðnÞinij ¼
Z x½n�3

x½n�1�
3

rðnÞij LðnÞin dx3; ð19Þ

and electric displacement resultants

TðnÞini ¼
Z x½n�

3

x½n�1�
3

DðnÞi LðnÞin dx3; ð20Þ

one obtains

P¼1
2

Z Z
X

X
n

X
in

X
i;j

HðnÞinij eðnÞinij �
X

i

TðnÞini EðnÞini

 !
dx1 dx2�W: ð21Þ

For simplicity, we consider the case of linear piezoelectric mate-
rials [32] described as

rðnÞij ¼
X

k;‘

CðnÞijk‘e
ðnÞ
k‘ �

X
k

eðnÞkij EðnÞk ; x½n�1�
3 6 x3 6 x½n�3 ; ð22Þ

DðnÞi ¼
X

k;‘

eðnÞik‘ e
ðnÞ
k‘ þ

X
k

2ðnÞik EðnÞk ; x½n�1�
3 6 x3 6 x½n�3 ; ð23Þ

where CðnÞijkl, eðnÞkij and 2ðnÞij are the elastic, piezoelectric and dielectric
constants of the nth layer.

Finally, we accept the last assumption of the FG piezoelectric
plate formulation. Let us assume that material constants are dis-
tributed through the thickness of a plate according to the following
law:

CðnÞijkl ¼
X

in

LðnÞin CðnÞinijkl ; ð24Þ

eðnÞkij ¼
X

in

LðnÞin eðnÞinkij ; ð25Þ
2ðnÞik ¼
X

in

LðnÞin2ðnÞinik ð26Þ

that is extensively utilized in this paper. Here, CðnÞinijkl , eðnÞinkij and 2ðnÞinik

are the values of elastic, piezoelectric and dielectric constants on
SaS of the nth layer.

Inserting constitutive Eqs. (22) and (23) respectively in Eqs. (19)
and (20) and taking into consideration the through-thickness dis-
tributions (7), (15), (24), (25), and (26), we arrive at formulas for
stress and electric displacement resultants:

HðnÞinij ¼
X
jn ;kn

KðnÞinjnkn
X

k;‘

CðnÞjnijk‘ eðnÞkn
k‘ �

X
k

eðnÞjnkij EðnÞkn
k

 !
; ð27Þ

TðnÞini ¼
X
jn ;kn

KðnÞinjnkn
X

k;‘

eðnÞjnik‘ eðnÞkn
k‘ þ

X
k

2ðnÞjnik EðnÞkn
k

 !
; ð28Þ

where

KðnÞinjnkn ¼
Z x½n�3

x½n�1�
3

LðnÞin LðnÞjn LðnÞkn dx3: ð29Þ

Now, the variational equation for the FG piezoelectric laminated
plate in the case of conservative loading is written as

dP ¼ 0: ð30Þ
5. 3D exact solution for FG piezoelectric orthotropic plates

In this section, we study a simply supported FG piezoelectric
laminated orthotropic rectangular plate. The edge boundary condi-
tions of the plate are assumed to be fully supported and electrically
grounded, that is,

rðnÞ11 ¼ uðnÞ2 ¼ uðnÞ3 ¼ uðnÞ ¼ 0 at x1 ¼ 0 and x1 ¼ a;

rðnÞ22 ¼ uðnÞ1 ¼ uðnÞ3 ¼ uðnÞ ¼ 0 at x2 ¼ 0 and x2 ¼ b;
ð31Þ

where a and b are the plate dimensions. To satisfy boundary condi-
tions, we search an analytical solution of the problem by a method
of double Fourier series expansion

uðnÞin1 ¼
X

r;s

uðnÞin1rs cos
rpx1

a
sin

spx2

b
; uðnÞin2 ¼

X
r;s

uðnÞin2rs sin
rpx1

a
cos

spx2

b
;

uðnÞin3 ¼
X

r;s

uðnÞin3rs sin
rpx1

a
sin

spx2

b
; uðnÞin ¼

X
r;s

uðnÞinrs sin
rpx1

a
sin

spx2

b
;

ð32Þ

where r, s are the wave numbers in plane directions. The external
electromechanical loads are also expanded in double Fourier series.

Substituting (32) and Fourier series corresponding to electro-
mechanical loading into the total potential energy (18) and (21)
with WR ¼ 0 and allowing for (3), (4), (9), (12), (16), (27), and
(28), one obtains

P ¼
X

r;s

Prs uðnÞinirs ;uðnÞinrs

� �
: ð33Þ

Invoking further the variational Eq. (30), we arrive at the system
of linear algebraic equations

@Prs

@uðnÞinirs

¼ 0;
@Prs

@uðnÞinrs

¼ 0 ð34Þ

of order 4(
P

nIn � N + 1). The linear system (34) can be easily solved
by using a method of Gaussian elimination.

The described algorithm was performed with the Symbolic
Math Toolbox, which incorporates symbolic computations into
the numeric environment of MATLAB. Such a technique gives the



Table 1
Elastic, piezoelectric and dielectric properties of materials.

Material PZT-4 PZT-5A Gr/Ep

C1111 (GPa) 139.0 99.201 183.443
C2222 (GPa) 139.0 99.201 11.662
C3333 (GPa) 115.0 86.856 11.662
C1122 (GPa) 77.8 54.016 4.363
C1133 (GPa) 74.3 50.778 4.363
C2233 (GPa) 74.3 50.778 3.918
C2323 (GPa) 25.6 21.1 2.87
C1313 (GPa) 25.6 21.1 7.17
C1212 (GPa) 30.6 22.593 7.17
e311 (C/m2) �5.2 �7.209 0
e322 (C/m2) �5.2 �7.209 0
e333 (C/m2) 15.1 15.118 0
e223 (C/m2) 12.7 12.322 0
e113 (C/m2) 12.7 12.322 0
211 (nF/m) 13.06 15.3 15.3
222 (nF/m) 13.06 15.3 15.3
233 (nF/m) 11.51 15.0 15.3
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possibility to derive the exact solutions of 3D electroelasticity for
FG piezoelectric orthotropic plates with a specified accuracy.

5.1. FG piezoelectric square plate

Consider a FG piezoelectric orthotropic square plate subjected
to mechanical loading acting on its top surface
Table 2
Results for a FG piezoelectric plate with a=h ¼ 10 and a ¼ �1 under mechanical loading.

I1 �u1ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ �r

5 4.2738 �2.4856 �12.138 �7.8609 3
7 4.2738 �2.4856 �12.138 �7.8544 3
9 4.2738 �2.4856 �12.138 �7.8543 3

11 4.2738 �2.4856 �12.138 �7.8543 3

Table 3
Results for a FG piezoelectric plate with a=h ¼ 10 and a ¼ 1 under mechanical loading.

I1 �u1ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ �r

5 1.1493 �0.92158 �4.4469 �15.336 6
7 1.1493 �0.92158 �4.4469 �15.360 6
9 1.1493 �0.92158 �4.4469 �15.360 6

11 1.1493 �0.92158 �4.4469 �15.360 6

Table 4
Results for a FG piezoelectric plate with a=h ¼ 10 and a ¼ �1 under electric loading.

I1 �u1ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ

5 208.76 �41.091 �200.62 182.37
7 208.76 �41.090 �200.68 182.80
9 208.76 �41.090 �200.68 182.80

11 208.76 �41.090 �200.68 182.80
13 208.76 �41.090 �200.68 182.80

Table 5
Results for a FG piezoelectric plate with a=h ¼ 10 and a ¼ 1 under electric loading.

I1 �u1ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ �r1

5 27.457 15.116 73.803 192.64 14
7 27.457 15.116 73.827 193.26 14
9 27.457 15.116 73.827 193.26 14

11 27.457 15.116 73.827 193.26 14
13 27.457 15.116 73.827 193.26 14
rþ33 ¼ �p0 sin
px1

a
sin

px2

b
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ D�3 ¼ Dþ3 ¼ 0
ð35Þ

or electric loading acting on the bottom and top surfaces

D�3 ¼ Dþ3 ¼ q0 sin
px1

a
sin

px2

b
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ rþ33 ¼ 0;
ð36Þ

where p0 ¼ 1 Pa and q0 = 10�6 C/m2 .
Following [20] we assume that the FG material constants are

distributed in the thickness direction according to the exponential
law:

Cijkl ¼ C�ijkle
aðzþ0:5Þ; eikl ¼ e�ikle

aðzþ0:5Þ;

2ik ¼ 2�ikeaðzþ0:5Þ; z ¼ x3=h;
ð37Þ

where C�ijkl, e�ikl and 2�ik are the values of elastic, piezoelectric and
dielectric constants on the bottom surface, which are considered
to be the same as those of the PZT-4 given in [20] and Table 1; a
is the material gradient index, which can be determined as

a ¼ ln
Cþijkl

C�ijkl
¼ ln

eþikl

e�ikl

¼ ln
2þik
2�ik

; ð38Þ

where Cþijkl, eþikl and 2þik are the values of elastic, piezoelectric and
dielectric constants on the top surface.

To compare the derived results with an exact solution [20], we
take a = b = 1 m and introduce the scaled field variables as follows:
12ð0:5Þ �r13ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

.0219 �1.1787 �0.28738 0.91327 0.20612

.0229 �1.1761 �0.28148 0.94503 0.21328

.0229 �1.1762 �0.28150 0.94516 0.21323

.0229 �1.1762 �0.28150 0.94516 0.21323

12ð0:5Þ �r13ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

.0057 �1.1786 �0.21238 4.8146 �0.23971

.0068 �1.1760 �0.21832 4.8517 �0.24667

.0068 �1.1760 �0.21829 4.8519 �0.24662

.0068 �1.1760 �0.21829 4.8519 �0.24662

�r12ð0:5Þ �r13ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

147.65 0.18798 �0.22143 783.82 4854.2
147.66 0.14102 �0.25627 783.28 4856.0
147.66 0.14140 �0.25555 783.27 4856.0
147.66 0.14140 �0.25556 783.27 4856.0
147.66 0.14140 �0.25556 783.27 4856.0

2ð0:5Þ �r13ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

3.51 �0.18798 �0.22143 1086.0 4854.2
3.50 �0.14102 �0.25627 1086.7 4856.0
3.50 �0.14140 �0.25555 1086.7 4856.0
3.50 �0.14140 �0.25556 1086.7 4856.0
3.50 �0.14140 �0.25556 1086.7 4856.0



Fig. 2. Distributions of transverse stresses, electric potential and electric displacement through the thickness of the FG piezoelectric square plate under mechanical loading
for I1 ¼ 9: present analysis (–) and Zhong and Shang (s).
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Fig. 3. Distributions of transverse stresses, electric potential and electric displacement through the thickness of the FG piezoelectric square plate under electric loading for
I1 ¼ 9: present analysis (–) and Zhong and Shang (s).
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Table 6
Results for a FG rectangular plate with b ¼ 2 under mechanical loading.

I1 �u1ð0:5Þ �u2ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ �r22ð0:5Þ

5 �4.7884 �2.3942 3.6300 1.0529 54.286 33.567
7 �4.7885 �2.3942 3.6630 1.0529 54.281 33.566
9 �4.7885 �2.3942 3.6630 1.0529 54.280 33.565

11 �4.7885 �2.3942 3.6630 1.0529 54.281 33.566
13 �4.7885 �2.3942 3.6630 1.0529 54.281 33.566
15 �4.7885 �2.3942 3.6630 1.0529 54.281 33.566

Fig. 5. Accuracy of satisfying the boundary conditions d�1 ; d�3 , d�4 and dþ1 , dþ3 , dþ4 on the bottom (s) and top (h) surfaces of the FG piezoelectric square plate with a=h ¼ 2 and
a ¼ �1 under electric loading.

Fig. 4. Accuracy of satisfying the boundary conditions d�1 , d�3 , d�4 and dþ1 , dþ3 , dþ4 on the bottom (s) and top (h) surfaces of the FG piezoelectric square plate with a=h ¼ 2 and
a = ±1 under mechanical loading.

Fig. 6. Distribution of elastic constants through the thickness of the FG rectangular
plate.
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�u1 ¼ 1011�u1ðP;zÞ; �u3 ¼ 1010�u3ðP;zÞ; �u¼ 103�uðP;zÞ;
�r11 ¼r11ðP;zÞ; �r12 ¼r12ðP;zÞ; �r13 ¼r13ðP;zÞ; �r33 ¼r33ðP;zÞ;
D1 ¼ 1010�D1ðP;zÞ; D3 ¼ 1010�D3ðP;zÞ; z¼ x3=h;

ð39Þ

where P(a/4,a/4) is the point belonging to a middle surface. The
data listed in Tables 2–5 for both cases of loading (35) and (36) of
the FG piezoelectric square plate with a/h = 10 and a = ±1 show that
the SaS method permits the derivation of the 3D exact solution with
a prescribed accuracy through the sufficient number of SaS. The first
rows of these tables (I1 = 5) correspond to the Kulikov and Carrera
fourth-order ESL formulation [28] with equally spaced SaS. It is seen
that a choice of five SaS is sufficient to obtain the accurate results.
However, in a proposed plate formulation the bottom and top sur-
faces are not included into a set of SaS because we deal here with a
single-layer plate in which all SaS are located at Chebyshev polyno-
mial nodes. Such an improvement leads to a uniform convergence.
Figs. 2 and 3 display the distributions of transverse stresses, electric
potential and electric displacement in the thickness direction for
different values of the slenderness ratio a/h employing nine SaS.
These results demonstrate convincingly the high potential of the
�r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

�13.812 394.03 197.02 43.220 �11.151 3.6944
�13.810 390.87 195.43 43.429 �11.559 3.7001
�13.810 390.36 195.18 43.511 �11.506 3.7000
�13.810 390.79 195.39 43.441 �11.568 3.7020
�13.810 390.80 195.40 43.439 �11.570 3.7016
�13.810 390.80 195.40 43.439 �11.570 3.7017
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proposed FG piezoelectric plate formulation. This is due to the fact
that boundary conditions on the bottom and top surfaces of the
shell for transverse components of the stress tensor and electric
Table 7
Results for a FG rectangular plate with b ¼ 2 under electric loading.

I1 �u1ð0:5Þ �u2ð0:5Þ �u3ð0Þ �uð0Þ �r11ð0:5Þ �r22ð0:5Þ

5 8.4568 4.2293 6.1634 �177.97 16.009 52.603
7 8.4568 4.2293 6.1633 �177.97 15.900 52.491
9 8.4568 4.2293 6.1633 �177.97 15.855 52.447

11 8.4568 4.2293 6.1633 �177.97 15.846 52.438
13 8.4568 4.2293 6.1633 �177.97 15.845 52.436
15 8.4568 4.2293 6.1633 �177.97 15.844 52.436

Fig. 7. Distributions of displacements, stresses, electric potential and electric displacem
I1 ¼ 13.
displacement vector are satisfied exactly by using the constitutive
Eqs. (22) and (23). Additionally, Figs. 4 and 5 present the logarith-
mic errors
�r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ D1ð0:5Þ D3ð0Þ

24.395 �3.5102 �1.7551 �0.57786 3383.6 3871.2
24.394 �3.6778 �1.8389 �0.67717 3383.5 3862.0
24.394 �3.6433 �1.8216 �0.67785 3383.5 3864.0
24.394 �3.6496 �1.8248 �0.67710 3383.5 3863.7
24.394 �3.6484 �1.8242 �0.67723 3383.5 3863.7
24.394 �3.6486 �1.8243 �0.67721 3383.5 3863.7

ent through the thickness of the FG rectangular plate under mechanical loading for



Fig. 8. Distributions of displacements, stresses, electric potential and electric displacement through the thickness of the FG rectangular plate under electric loading for
I1 ¼ 13.
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d�1 ¼ lg j�r13ð�0:5Þj; dþ1 ¼ lg j�r13ð0:5Þj;
d�3 ¼ lg j�r33ð�0:5Þj; dþ3 ¼ lg j�r33ð0:5Þ þ p0=2j;
d�4 ¼ lg 108 � j10�10 � D3ð�0:5Þ � q0=2j;
dþ4 ¼ lg 108 � j10�10 � D3ð0:5Þ � q0=2j;

ð40Þ
Table 8
Results for a FG piezoelectric angle-ply plate with b ¼ �2 under mechanical loading.

In �u1ð0:5Þ �u3ð0Þ �r11ð0:5Þ �r13ð0Þ

3 �2.8806 3.4829 5.0193 0.41940
5 �2.8810 3.4927 5.0107 0.43015
7 �2.8810 3.4927 5.0107 0.43013
9 �2.8810 3.4927 5.0107 0.43013
which help to assess the accuracy of fulfilling the boundary condi-
tions for transverse stresses and electric displacement on outer sur-
faces of a plate. The results shown in Figs. 4 and 5 correspond
respectively to the cases of q0 = 0 and p0 = 0. Note that the proposed
SaS method provides a monotonic convergence that is impossible
with equally spaced SaS [28].
�r23ð0:25Þ �r33ð0Þ �uð�0:5Þ D3ð0:5Þ

�0.77314 0.50907 �0.43709 �0.30296
�0.85600 0.50978 �0.43713 �0.30556
�0.85585 0.50978 �0.43713 �0.30555
�0.85585 0.50978 �0.43713 �0.30555
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5.2. FG piezoelectric rectangular plate

Next, we study a FG piezoelectric orthotropic rectangular plate
subjected to mechanical loading acting on the top surface

rþ33 ¼ p0 sin
px1

a
sin

px2

b
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ D�3 ¼ Dþ3 ¼ 0
ð41Þ

or electric loading acting on the same surface

Dþ3 ¼ q0 sin
px1

a
sin

px2

b
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ rþ33 ¼ D�3 ¼ 0;
ð42Þ

where p0 ¼ 1 Pa and q0 ¼ 10�7 C=m2 .
Here, we consider and compare two basic approaches widely

used for describing the FG piezoelectric materials, namely, the
exponential law (37) and the most popular power law [32]. The lat-
ter law reflects a simple rule of mixtures efficiently utilized for
finding the effective properties of the FG piezoelectric material
and can be presented as follows:

Cijkl ¼ C�ijklV
� þ CþijklV

þ; eikl ¼ e�iklV
� þ eþiklV

þ;

2ik ¼ 2�ikV� þ 2þikVþ; Vþ ¼ 1� V�;
ð43Þ

where C�ijkl, e�ikl, 2�ik and Cþijkl, eþikl, 2þik are the values of elastic, piezo-
electric and dielectric constants on the bottom and top surfaces;
V�ðzÞ is the volume fraction given by

V� ¼ ð0:5� zÞb; z ¼ x3=h; ð44Þ

where b is the material gradient index.
The material constants on the bottom surface are considered to

be the same as those of the PZT-4 given in Table 1, whereas the
material constants on the top surface are three times more than
those of the PZT-4. To investigate the response of the FG piezoelec-
tric rectangular plate more carefully, we consider four values of the
material gradient index: a ¼ 1:0986 in the case of using the expo-
nential law (37), i.e. only one value can be chosen according to
(38), and b ¼ 0:2;2;5 in the case of the power law (43), which al-
lows many values to be taken as illustrated in Fig. 6.
Table 9
Results for a FG piezoelectric angle-ply plate with b ¼ 2 under mechanical loading.

In �u1ð0:5Þ �u3ð0Þ �r11ð0:5Þ �r13ð0Þ

3 �1.8647 2.5297 11.045 0.37959
5 �1.8649 2.5388 10.993 0.38675
7 �1.8649 2.5388 10.993 0.38674
9 �1.8649 2.5388 10.993 0.38674

Table 10
Results for a FG piezoelectric angle-ply plate with b = �2 under electric loading.

In ~u1ð0:5Þ ~u3ð0Þ ~r11ð0:5Þ ~r13ð0Þ

3 �5.3941 3.3518 �1.5376 0.9069
5 �5.3982 3.3522 �1.5601 1.0061
7 �5.3982 3.3522 �1.5600 1.0059
9 �5.3982 3.3522 �1.5600 1.0059

11 �5.3982 3.3522 �1.5600 1.0059

Table 11
Results for a FG piezoelectric angle-ply plate with b = 2 under electric loading.

In ~u1ð0:5Þ ~u3ð0Þ ~r11ð0:5Þ ~r13ð0Þ

3 �6.7380 3.8815 �0.41702 0.9449
5 �6.7363 3.8769 �0.62918 1.0600
7 �6.7363 3.8769 �0.63167 1.0598
9 �6.7363 3.8769 �0.63172 1.0598

11 �6.7363 3.8769 �0.63172 1.0598
The geometric parameters of the plate are taken as a ¼ 1 m,
b ¼ 2 m and h ¼ 0:1 m. To analyze the derived results for both
types of loading (41) and (42) effectively, we introduce the follow-
ing scaled field variables at crucial points:

�u1 ¼ 1011 � u1ð0; b=2; zÞ; �u2 ¼ 1011 � u2ða=2;0; zÞ;
�u3 ¼ 1010 � u3ða=2; b=2; zÞ;
�r11 ¼ r11ða=2; b=2; zÞ; �r22 ¼ r22ða=2; b=2; zÞ; �r12 ¼ r12ð0;0; zÞ;
�r13 ¼ 102 � r13ð0; b=2; zÞ; �r23 ¼ 102 � r23ða=2;0; zÞ;
�r33 ¼ 102 � r33ða=2; b=2; zÞ;
�u ¼ 102 �uða=2; b=2; zÞ; D1 ¼ 1010 � D1ð0; b=2; zÞ;
D3 ¼ 1011 � D3ða=2; b=2; zÞ:

ð45Þ

Tables 6 and 7 demonstrate again the high potential of the SaS
method that yields the exact solution of 3D electroelasticity for FG
piezoelectric rectangular plates with a prescribed accuracy using
the sufficient number of SaS. The first rows of these tables (I1 = 5)
correspond to the fourth-order ESL formulation [28] with equally
spaced SaS. However, the accuracy of computations is slightly
worse than in the case of FG piezoelectric square plates. Figs. 7
and 8 present the distributions of displacements, stresses, electric
potential and electric displacement through the thickness of the
plate employing 13 SaS. As can be seen, the boundary conditions
on the bottom and top surfaces for transverse components of the
stress tensor and electric displacement vector are satisfied with a
high accuracy.

6. 3D exact solution for FG piezoelectric anisotropic plates in
cylindrical bending

Herein, we study a simply supported FG piezoelectric laminated
anisotropic plate in cylindrical bending. The boundary conditions
of the plate with electrically grounded edges are taken as

rðnÞ11 ¼ rðnÞ12 ¼ uðnÞ3 ¼ uðnÞ ¼ 0 at x1 ¼ 0 and x1 ¼ a ð46Þ
�r23ð0:25Þ �r33ð0Þ �uð�0:5Þ D3ð0:5Þ

�0.48188 0.50864 �0.27007 �0.33897
�0.53847 0.50932 �0.27012 �0.35467
�0.53837 0.50932 �0.27012 �0.35487
�0.53837 0.50932 �0.27012 �0.35487

~r23ð0:25Þ ~r33ð0Þ ~uð�0:5Þ ~D3ð0:5Þ

�1.4637 2.6756 �0.028463 �0.77512
�1.5662 2.8278 �0.028484 �0.78198
�1.5660 2.8276 �0.028484 �0.78195
�1.5660 2.8276 �0.028484 �0.78196
�1.5660 2.8276 �0.028484 �0.78196

~r23ð0:25Þ ~r33ð0Þ ~uð�0:5Þ ~D3ð0:5Þ

�1.6615 3.7523 �0.024613 �1.3991
�1.7826 3.9646 �0.024614 �1.4614
�1.7823 3.9643 �0.024614 �1.4621
�1.7823 3.9643 �0.024614 �1.4621
�1.7823 3.9643 �0.024614 �1.4621
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to simulate simple supports, where a is the width of the plate. In the
case of the monoclinic piezoelectric material with a poling direction
coincident with the x3 axis, we can search an analytical solution of
the problem as follows:

uðnÞin1 ¼
X1
r¼1

uðnÞin1r cos
rpx1

a
; uðnÞin2 ¼

X1
r¼1

uðnÞin2r cos
rpx1

a
;

uðnÞin3 ¼
X1
r¼1

uðnÞin3r sin
rpx1

a
; uðnÞin ¼

X1
r¼1

uðnÞinr sin
rpx1

a
:

ð47Þ

The external electromechanical loads are also expanded in
Fourier series.

Substituting (47) and Fourier series corresponding to electro-
mechanical loading into the extended potential energy (18) and
Fig. 9. Distributions of displacements, transverse stresses and electric displacement in
loading for I1 ¼ I2 ¼ I3 ¼ I4 ¼ I5 ¼ 9: present analysis (–) and authors’ 3D exact solution
(21) and taking into consideration Eqs. (3), (4), (9), (12), (16),
(27), and (28), we obtain

P ¼
X1
r¼1

PrðuðnÞinir ;uðnÞinr Þ: ð48Þ

The use of Eqs. (30) and (48) leads to a system of linear algebraic
equations

@Pr

@uðnÞinir

¼ 0;
@Pr

@uðnÞinr

¼ 0 ð49Þ

of order 4
P

nIn � N þ 1
� �

. The linear system (49) can be solved by a
method of Gaussian elimination.

The described algorithm was performed with the Symbolic
Math Toolbox, which incorporates symbolic computations into
the thickness direction of the FG piezoelectric angle-ply plate under mechanical
[16] (s).
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the numeric environment of MATLAB. That allows one to derive the
3D exact solutions of electroelasticity for FG piezoelectric lami-
nated anisotropic plates in cylindrical bending with a specified
accuracy.

As a numerical example, we study a symmetric three-ply
plate with the stacking sequence [45/�45/45] made of the
graphite–epoxy composite and covered with FG piezoelectric
layers of equal thicknesses on its bottom and top surfaces [9].
This means that a five-ply plate with the stacking sequence
[PZT/45/�45/45/PZT] is considered. The ply thicknesses are taken
as h1 ¼ h5 ¼ h=8 and h2 ¼ h3 ¼ h4 ¼ h=4. The interfaces between
the substrate and piezoelectric layers are electroded and
grounded.

The material properties of the graphite–epoxy composite are gi-
ven in Table 1. Concerning both FG piezoelectric layers it is
Fig. 10. Distributions of displacements, transverse stresses and electric displacement in
for I1 ¼ I2 ¼ I3 ¼ I4 ¼ I5 ¼ 9: present analysis (–) and authors’ 3D exact solution [16] (s
assumed that their material properties are distributed in the thick-
ness direction according to a power law, that is

Cð1Þijkl ¼ C0
ijklV1ðzÞ; eð1Þikl ¼ e0

iklV1ðzÞ;

2ð1Þik ¼ 2
0
ikV1ðzÞ; V1ðzÞ ¼ ð�8z=3Þb; �1=2 6 z 6 �3=8;

Cð5Þijkl ¼ C0
ijklV5ðzÞ; eð5Þikl ¼ e0

iklV5ðzÞ;

2ð5Þik ¼ 2
0
ikV5ðzÞ; V5ðzÞ ¼ ð8z=3Þb; 3=8 6 z 6 1=2;

ð50Þ

where C0
ijkl, e0

ikl and 20
ik are the elastic, piezoelectric and dielectric

constants at interfaces between piezoelectric and substrate layers,
which are considered to be the same as those of the PZT-5A given
in [9] and Table 1; b is the material gradient index; z ¼ x3=h is the
dimensionless thickness coordinate. To investigate a response of
the FG piezoelectric angle-ply plate more carefully, we consider five
the thickness direction of the FG piezoelectric angle-ply plate under electric loading
).



Fig. 11. Accuracy of satisfying the boundary conditions d�i , d�4 and dþi on the bottom (s) and top (h) surfaces of the FG piezoelectric angle-ply plate under mechanical loading:
(a) b ¼ 0 and (b) b ¼ 2.
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values of the material index b ¼ �2;�1;0;1;2. The case of b ¼ 0
corresponds to an angle-ply plate with homogeneous piezoelectric
layers. This allows a comparison with the authors’ 3D exact solution
[16].

The plate is subjected to mechanical loading acting on the top
surface

rþ33 ¼ p0 sin
px1

a
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ D�3 ¼ uþ ¼ 0
ð51Þ

or electric loading acting on the same surface

uþ ¼ u0 sin
px1

a
;

r�13 ¼ rþ13 ¼ r�23 ¼ rþ23 ¼ r�33 ¼ rþ33 ¼ D�3 ¼ 0;
ð52Þ

where p0 ¼ 1 Pa and u0 ¼ 1 V. To compare the results derived with
the 3D exact solution [16] in the case of mechanical loading, the fol-
lowing dimensionless variables are introduced:

�u1 ¼ 100ET h2u1ða=4; zÞ=p0a3; �u3 ¼ 100ET h3u3ða=2; zÞ=p0a4;

�r11 ¼ 10h2r11ða=2; zÞ=p0a2; �r13 ¼ hr13ða=8; zÞ=p0a;
�r23 ¼ 10hr23ð7a=8; zÞ=p0a; �r33 ¼ r33ða=2; zÞ=p0;

�u ¼ 100ET dT huða=2; zÞ=p0a2; D3 ¼ h2D3ða=2; zÞ=dT p0a2;

ð53Þ

where a ¼ 1 m, h ¼ 0:2 m, ET ¼ 10:3 GPa and dT ¼ 374� 10�12 m=V.
In the case of electric loading, we have

~u1 ¼ 10hu1ða=4; zÞ=adTu0; ~u3 ¼ 10h2u3ða=2; zÞ=a2dTu0;

~r11 ¼ hr11ða=2; zÞ=10ET dTu0; ~r13 ¼ ar13ða=4; zÞ=ET dTu0;

~r23 ¼ ar23ð7a=8; zÞ=ET dTu0; ~r33 ¼ a2r33ða=2; zÞ=hET dTu0;

~u ¼ uða=2; zÞ=u0;
~D3 ¼ hD3ða=2; zÞ=100ET d2

Tu0:

ð54Þ

The results from Tables 8–11 show that the SaS method permits
the derivation of exact solutions of plane strain electroelasticity for
FG piezoelectric angle-ply plates with a prescribed accuracy using
the sufficient number of SaS. Figs. 9 and 10 present the distribu-
tions of the displacements, transverse stresses and electric dis-
placement through the thickness of a plate for different values of
the material index b employing nine SaS inside each layer exactly.
As can be seen, the boundary conditions on bottom and top sur-
faces and the continuity conditions at interfaces for transverse
stresses are satisfied with a high accuracy. This statement is con-
firmed convincingly in Fig. 11 by means of logarithmic errors
d�a ¼ lg j�ra3ð�0:5Þj; d�3 ¼ lg j�r33ð�0:5Þj;
dþ3 ¼ lg j�r33ð0:5Þ � 1j; d�4 ¼ lg jD3ð�0:5Þj;

ð55Þ

which characterize the accuracy of fulfilling the boundary condi-
tions for the electric displacement and transverse stresses on outer
surfaces for a FG piezoelectric angle-ply plate subjected to mechan-
ical loading.

7. Conclusions

An efficient approach to 3D exact solutions of electroelasticity
for FG piezoelectric laminated plates has been proposed. It is based
on the new method of SaS located at Chebyshev polynomial nodes
inside the plate body. The stress analysis is based on the 3D consti-
tutive equations of electroelasticity and gives the opportunity to
obtain the 3D exact solutions for FG piezoelectric laminated thick
and thin plates with a specified accuracy.
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