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Summary 

 
This paper presents assumed stress-strain four-node curved shell elements 

with six displacement degrees of freedom per node for the finite deformation 
first-order shell theory. The developed formulation is based on the principally 
new non-linear strain-displacement relationships that are objective, i.e., invariant 
under arbitrarily large rigid-body motions. To avoid shear and membrane locking 
and have no spurious zero energy modes, the assumed stress resultant and strain 
fields are invoked. In order to circumvent thickness locking, the modified mate-
rial stiffness matrices corresponding to the plane stress state are employed. The 
fundamental unknowns consist of six displacements and 11 strains of the face 
surfaces of the shell, and 11 stress resultants. The element characteristic arrays 
are obtained by using the Hu-Washizu variational principle. To demonstrate the 
efficiency and accuracy of this formulation and to compare its performance with 
other non-linear finite element models reported in the literature, two numerical 
examples are presented. 
 

Problem Formulation 
 

Using the solid-shell concept in a non-linear finite element (FE) formulation 
is well established and has been shown to give acceptable results [1-4]. In order 
to develop the solid-shell elements that overcome shear, membrane, trapezoidal 
and thickness locking, advanced FE techniques were applied. In this light, in 
some works for constructing the solid-shell elements only displacements of the 
face surfaces are used. A main idea of such approach is that displacement vectors 
of the face surfaces of the shell are represented in some global Cartesian basis in 
order to exactly describe rigid-body motions.  

Herein, it is developed a close non-linear FE formulation based on the first-
order theory of multilayered beams [5], plates [6] and shells [7]. But in our FE 
development selecting as unknowns the displacements of the face surfaces in a 
form 
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has a principally another mechanical sense and allows to formulate curved shell 
elements with very attractive properties, since objective non-linear strain-
displacement relationships [7], i.e., invariant under all large rigid-body motions 
are applied. In approximation (1) the following notations are used: u  is the dis-
placement vector; ( )321 ,, αααiu  are the components of this vector, which are 
always measured in accordance with the total Lagrangian formulation from the 
initial configuration to the current configuration directly; ±v  are the displace-
ment vectors of face surfaces ±S ; ( )21,αα±

iv  are the components of these vec-
tors; α1 and α2 are the orthogonal curvilinear coordinates of the reference surface; 
α3 is the normal coordinate; 1e  and 2e  are the tangent unit vectors to the lines of 

principal curvatures; 3e  is the vector normal to the reference surface; ( )3α
±N  are 

the linear shape functions of the shell.  
Taking into account that displacement vectors of the face surfaces (1b) are 

represented in the local reference surface basis, the developed FE formulation 
has computational advantages compared to conventional isoparametric FE for-
mulations because it eliminates the costly numerical integration by deriving the 
stiffness matrix. Besides, our element matrix requires only direct substitutions, 
i.e., no inversion is needed if sides of the element coincide with the lines of prin-
cipal curvatures of the reference surface, and it is evaluated by using the full ex-
act analytical integration. 

The FE formulation is free of assumptions of small displacements, small rota-
tions and small loading steps because it is based on the objective fully non-linear 
strain-displacement relationships. There exists only one limitation associated 
with a simple fact that a loading step cannot be too large. This restriction arises in 
a case of using the Newton-Raphson method for solving equilibrium equations 
for incremental nodal degrees of freedom, i.e., in work [7] the incremental as-
sumed strains and stress resultants are eliminated at the element level. Herein, it 
is discussed an alternative approach when equilibrium equations for incremental 
displacements and incremental assumed strains and stress resultants are solved by 
the Newton-Raphson method simultaneously. As a result an additional incre-
mental load vector due to compatibility mismatch [3, 4, 8] is present and disap-
pears only at the end of the iteration process. So, this refined approach allows to 
use much larger load increments in comparison with approach [7]. 

The proposed FE formulation is based on a simple and efficient approxima-
tion of shells via four-node curved elements. To avoid shear and membrane lock-
ing and have no spurious zero energy modes, the assumed stress resultant and 
strain fields are invoked. In order to circumvent thickness locking, the modified 
material stiffness matrices symmetric [1, 3, 9] or non-symmetric [5-7] corre-
sponding to the plane stress state are employed. As a result, two elements were 
constructed, namely, TMS4SA with a symmetric stiffness matrix and TMS4RA 
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with a non-symmetric one. Note also that fundamental unknowns consist of six 
displacements and 11 strains of the face surfaces of the shell, and 11 stress resul-
tants. Therefore, for deriving element characteristic arrays the Hu-Washizu varia-
tional principle should be applied.  
 

Numerical Tests 
 

In all numerical benchmark problems the tolerance error from the standard 
criterion [7] is set to be 410−=ε . All our results are compared with those based 
on using identical node spacing and in the first example the same convergence 
tolerance. Besides, NStep denotes a number of load steps employed to equally 
divide the maximum load while NIter stands for a number of iterations. Note also 
that the developed shell elements TMS4RA and TMS4SA are slightly distin-
guishable for engineering calculations, and the predictions of all elements are 
insensitive to a number of loading steps. 

To investigate the capability of TMS4RA and TMS4SA elements to over-
come membrane and shear locking phenomena, we consider one of the most de-
manding non-linear test. A hemispherical shell with 18o hole at the top is loaded 
by two pairs of opposite concentrated forces on the equator. The geometrical and 
material data of the problem are shown in Fig.1. Due to symmetry of the prob-
lem, only one quarter of the shell is modeled with 1616×  mesh of the TMS4 ele- 

 
 

  
 

4,100,3.0,10825.6,18Hole,04.0,10 7o ===ν×==== ffPEhR  
Shell of revolution with geometrical parameters2: 

[ ] [ ]2/,0,5/2,0,/1,cos, 212121 π∈απ∈ϕ=α==ϕ== RkkRARA  
 

Fig. 1. Pinched hemispherical shell 

                                                 
2 A1 and A2 are the Lamé coefficients; k1 and k2 are the principal curvatures of the refer-

ence surface 
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ments. Table 1 and Fig. 2 present a comparison with solutions [3, 4] derived by 
using 88×  and 1616×  meshes of biquadratic and bilinear solid-shell elements, 
correspondingly. As can be seen, both TMS4 elements perform very well, since 
only 7 iterations are needed to obtain a solution of this discriminating problem. 
 

 
 

Fig. 2. Displacements of pinched hemispherical shell 
 

Table 1. Transverse displacements under applied loads of hemispherical shell 
 

Element  NStep = 1 NStep = 5 NStep = 10  

  B
3v  A

3v−  NIter B
3v  A

3v−  NIter B
3v  A

3v−  NIter  

TMS4RA  4.0566 8.1519 7 4.0566 8.1519 17 4.0566 8.1519 29  
TMS4SA  4.0568 8.1523 7 4.0568 8.1523 17 4.0568 8.1523 29  
Park et al.  4.0205 8.0160 8 4.0209 8.0169 23 4.0209 8.0169 35  
Sze et al.  4.0488 8.1173 8 4.0488 8.1173 21 4.0488 8.1173 36  
 

Further we consider a cross-ply hyperbolic shell under two pairs of opposite 
concentrated forces. The geometrical and material data of the three-layer hyper-
bolic shell are given in Fig. 3, where 0o and 90o refer to the circumferential and 
meridional directions. Owing to symmetry of the problem, only one octant of the 
shell is discretized with the uniform 2828×  mesh of TMS4 elements. Table 2 
and Fig. 4 present our results compared with those reported in works [2, 10] us-
ing 1414 ×  and 2828×  uniform meshes of biquadratic and bilinear solid-shell 
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elements, where xu  and yu  denote displacements of the middle surface in x and 
y directions. One may observe that both TMS4 elements perform excellently. 
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Fig. 3. Pinched cross-ply hyperbolic shell 
 

  
Fig. 4. Displacements of pinched cross-ply hyperbolic shell 
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Table 2. Displacements at points A, B, C and D of cross-ply hyperbolic shell 
 
Element  NStep =4 NStep =10  
  A

yu−  B
xu  C

yu  D
xu− NIter A

yu− B
xu  C

yu  D
xu−  NIter  

TMS4RA  6.0663 3.8311 2.7258 3.7339 25 6.0663 3.8311 2.7258 3.7339 36  
TMS4SA  6.0660 3.8310 2.7257 3.7340 25 6.0660 3.8310 2.7257 3.7340 36  
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