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Summary

A nonlinear exact geometry hybrid-mixed four-node solid-shell element using
the sampling surfaces (SaS) formulation is developed for the analysis of the sec-
ond Piola-Kirchhoff stress that extends the authors' finite element (Int J Numer
Methods Eng. 2019;117:498-522) to laminated composite shells. The SaS formu-
lation is based on choosing inside the layers the arbitrary number of SaS parallel
to the middle surface and located at Chebyshev polynomial nodes in order to
introduce the displacements of these surfaces as basic shell unknowns. The
external surfaces and interfaces are also included into a set of SaS. The proposed
hybrid-mixed solid-shell element is based on the Hu-Washizu variational princi-
ple and is completely free of shear and membrane locking. The tangent stiffness
matrix is evaluated by efficient three-dimensional (3D) analytical integration.
As a result, the developed exact geometry solid-shell element exhibits a superior
performance in the case of coarse meshes and allows the use of load incre-
ments, which are much larger than possible with existing displacement-based
solid-shell elements. It could be useful for the 3D stress analysis of thick and thin
doubly curved laminated composite shells because the SaS formulation gives the
possibility to obtain the 3D solutions with a prescribed accuracy.
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1 INTRODUCTION

In recent years, a considerable work has been carried out on finite rotation continuum-based finite elements that can
handle the analysis of laminated composite shells satisfactorily. These elements are defined by two layers of nodes at
the bottom and top surfaces with three translational degrees of freedom (DOFs) per node and known as six-parameter
solid-shell elements.1-9 However, the six-parameter solid-shell formulation based on the complete constitutive equations
is deficient because thickness locking occurs. This is due to the fact that the linear displacement field in the thickness
direction results in a constant transverse normal strain, which, in turn, causes artificial stiffening of the shell element in
the case of nonvanishing Poisson's ratios. To prevent thickness locking, the three-dimensional (3D) constitutive equations
should be modified using the generalized plane stress conditions.1,2,6,8 The popular enhanced assumed strain (EAS)
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method3,7,9 in which the transverse normal strain is enriched in the thickness direction by a linear term and the hybrid
stress method4,5 in which the transverse normal stress is assumed to be constant through the thickness can be also
utilized.

An effective way of using the 3D constitutive equations is to apply the solid-shell element with seven DOFs.10-20 The
seven-parameter shell formulation can be developed choosing six displacements of the bottom and top surfaces and a
transverse displacement of the middle surface as basic shell unknowns.10,18,19 This formulation is optimal with respect
to a number of DOF. To overcome locking phenomena, the assumed natural strain (ANS) method,10-13,15,16 the EAS
method12,14 and the hybrid-mixed method14,18,19 were used. Applications to laminated composite shells and functionally
graded material shells can be found in contributions.12,17-22

The more general nine-parameter solid-shell element formulation in which nine displacements of the bottom, middle,
and top surfaces are introduced as basic shell unknowns has been developed later.23,24 Such choice of sampling surfaces
(SaS) with the use of Lagrange polynomials of the second degree in through-thickness interpolations of the displacements
and strains permits one to present the nonlinear nine-parameter solid-shell element formulation in a very compact form.
Moreover, this model makes possible to derive the Green-Lagrange strain tensor, which exactly represents the arbitrarily
large rigid-body shell motions in convected curvilinear coordinates. Taking into account that the displacement vectors of
SaS are resolved in the middle surface basis, the higher-order shell formulation with nine translational DOFs is suitable
to develop the exact geometry or geometrically exact (GeX) solid-shell elements. The term GeX means that the param-
eterization of the middle surface is known a priori and, therefore, the coefficients of the first and second fundamental
forms and Christoffel symbols are taken exactly at element nodes.

The GeX shell elements are attractive due to the fact that, in the geometric modeling of modern CAD systems, the
surfaces are usually generated by B-splines or nonuniform rational B-splines (NURBS).25,26 Accounting for that surfaces
are produced by the position vector with representation of two parameters, we can connect the geometric modeling
of the shell surface, generated in a CAD system, to the finite element analysis of shell structures. Thus, it is advan-
tageous to use the NURBS surface functions directly in shell calculations and the GeX solid-shell elements are very
convenient for this purpose. They also have the two-parameter representation in surfaces and all geometric computa-
tions may be done in the middle surface through NURBS surface representations in the CAD system. The NURBS-based
isogeometric finite elements and their generalization to T-splines and RHT-splines are very popular because they
have some advantages compared to conventional Lagrange-based finite elements. This topic is discussed in many
contributions.27-36

It is apparent that the GeX shell elements cannot be readily applied to modeling the shells of free-form surfaces. This
is because of the fact that the geometric objects such as coefficients of the second fundamental form or curvatures of the
middle surface are not easily accessible in a computational context. A methodology of using the CAD systems, particularly
bicubic B-spline functions, for the GeX shell elements has been presented by Roh and Cho.25 However, for describing the
surface of revolution, there is no sense to invoke the CAD system technology because, in the literature, there is a simple
approach based on the cubic spline functions. This approach has been proposed by Grigolyuk and Kulikov37 as early as
1982 for describing a shell of revolution whose the middle surface is generated by rotation of the arbitrary curve given on
the plane by a discrete number of points with the random errors of measure. To solve a problem, the efficient numerical
algorithm of smoothing the data by cubic spline functions37,38 can be employed. This technique was used later for the
analysis of pneumatic tires,38-42 which are the most widely used composite shell structures of commercial importance
today.

It should be noted that the seven- and nine-parameter solid-shell elements do not describe properly the transverse
components of the second Piola-Kirchhoff stress tensor in laminated composite shells. To evaluate them without intro-
ducing additional DOF, the advanced computational techniques should be adopted; see, eg, papers,43-45 in which the
through-thickness distributions of transverse shear components satisfying the boundary conditions on outer surfaces
have been obtained. However, no results for the transverse normal component are documented. The present paper is
intended to overcome this shortcoming and develop the higher-order solid-shell elements for calculating all components
of the second Piola-Kirchhoff stress tensor in thick and thin shell limits. For this purpose, the GeX nonlinear solid-shell
element through the SaS formulation46,47 is proposed. The SaS laminated shell formulation is based on choosing inside
each layer In SaS parallel to the middle surface in order to introduce the displacements of these surfaces as fundamental
shell unknowns, where n = 1, 2,… , N ; N is the number of layers. Such choice of unknowns with the consequent use of
Lagrange polynomials of degree In − 1 in the through-thickness approximations of displacements, strains, and stresses of
the nth layer yields a robust higher-order layerwise shell formulation, in which all basic variables including strains and
stresses are related to SaS.
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Recently, the SaS formulation has been utilized to develop the four-node flat and curved quadrilateral elements for
the linear and nonlinear 3D stress analysis of single-layer homogeneous and functionally graded material plates and
shells48-51 with the SaS located at Chebyshev polynomial nodes. It is important because the SaS formulation with equally
spaced SaS46 does not work properly with the Lagrange polynomials of high degree due to Runge's phenomenon.47 This
phenomenon can yield the oscillation at the edges of the interval when the user deals with some specific functions similar
to metric functions involved in the GeX strain-displacement equations. However, the use of Chebyshev polynomial nodes
can improve the behavior of the Lagrange polynomials of high degree because such choice permits one to minimize
uniformly the error owing to Lagrange interpolation.47 Therefore, one can calculate the displacements and stresses with
a prescribed accuracy employing the sufficient number of SaS.

To circumvent element locking, the hybrid-mixed method pioneered by Pian52 can be applied efficiently. There are
three types of hybrid-mixed shell elements in the literature, namely, the hybrid stress,4,5,14,53 hybrid strain,1,2,14,54 and
hybrid stress-strain6,8,18,19,23,24,55 elements. These finite elements are based respectively on the Hellinger-Reissner varia-
tional principle53 with displacements and stresses as independent variables, the modified Hellinger-Reissner variational
principle54 in which the displacements and strains are used as primary variables, and the Hu-Washizu variational
principle55 depending upon displacements, strains, and stresses. The proposed finite rotation GeX/SaS solid-shell element
is based on the hybrid stress-strain method and has computational advantages compared to conventional isoparametric
hybrid-mixed solid-shell elements.1,2,4,5,9,14 This is due to the fact that all element matrices require only direct substitu-
tions and no expensive numerical matrix inversion is needed. The advantage of the nonlinear GeX four-node solid-shell
element is the use of effective 3D analytical integration23,24,42,51 that makes possible to utilize the extremely coarse meshes.
Besides, the GeX hybrid-mixed solid-shell element allows one to employ the load increments, which are much larger than
possible with existing displacement-based solid-shell elements.3,7,10-17,20 Thus, it can be applied efficiently to large scale
computations of doubly curved laminated composite shells undergoing arbitrarily large displacements and rotations.

The proposed finite rotation GeX/SaS solid-shell element formulation is characterized by the following features and
new developments.

• We introduce stresses of inner SaS inside the layers and interfaces instead of stress resultants used in previous studies
that simplifies the implementation of the hybrid stress-strain method. This novelty allows the presentation of governing
equations of the layerwise solid-shell element in terms of only SaS variables.

• The tangent stiffness matrix of the laminated anisotropic sold-shell element is evaluated through efficient 3D analytical
integration and its explicit form is given. As a result, the developed GeX/SaS solid-shell element exhibits a superior
performance in the case of coarse meshes.

2 DESCRIPTION OF UNDERFORMED SHELL

Consider a laminated shell of the thickness h. Let the middle surfaceΩ be described by orthogonal curvilinear coordinates
𝜃1 and 𝜃2, which are referred to the lines of principal curvatures of its surface. The coordinate 𝜃3 is oriented along the
unit vector e3(𝜃1, 𝜃2) normal to the middle surface. Introduce the following notations: e𝛼(𝜃1, 𝜃2) are the orthonormal base
vectors of the middle surface; r = r(𝜃1, 𝜃2) is the position vector of any point of the middle surface; ai(𝜃1, 𝜃2) are the basis
vectors of the middle surface given by

a𝛼 = r𝛼 = A𝛼e𝛼, a3 = e3, (1)

where A𝛼(𝜃1, 𝜃2) are the coefficients of the first fundamental form; 𝜃(n)in
3 are the coordinates of SaS of the nth layer

expressed as

𝜃
(n)1
3 = 𝜃[n−1]

3 , 𝜃
(n)In
3 = 𝜃[n]3 ,

𝜃
(n)mn
3 = 1

2
(
𝜃[n−1]

3 + 𝜃[n]3
)
− 1

2
hn cos

(
𝜋

2mn − 3
2 (In − 2)

)
,

(2)

where hn = 𝜃[n]3 − 𝜃[n−1]
3 is the thickness of the nth layer; 𝜃[m]

3 are the coordinates of interfaces Ω[m]; the index n identifies
the belonging of any quantity to the nth layer and runs from 1 to N, whereas the index m identifies the belonging of any
quantity to the interface and runs from 1 to N − 1; N is the number of layers; the indices mn running from 2 to In − 1
describe the inner SaS of the nth layer, whereas the indices in, jn, kn running from 1 to In describe all SaS of the nth layer;
In is the total number of SaS of the nth layer.
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FIGURE 1 Geometry of the laminated shell

Introduce the next group of notations: R = r + 𝜃3e3 is the position vector of any point in the shell body; gi are the base
vectors in the shell body defined as

g𝛼 = R,𝛼 = A𝛼c𝛼e𝛼, g3 = R,3 = e3, (3)
where c𝛼 = 1 + k𝛼𝜃3 are the components of the shifter tensor; k𝛼(𝜃1, 𝜃2) are the principal curvatures of the middle surface;
R(n)in (𝜃1, 𝜃2) = r + 𝜃

(n)in
3 e3 are the position vectors of SaS of the nth layer; g(n)in

i (𝜃1, 𝜃2) are the base vectors of SaS of the
nth layer (see Figure 1) given by

g(n)in
𝛼 = R(n)in

,𝛼 = A𝛼c(n)in
𝛼 e𝛼, g(n)in

3 = e3, (4)

where c(n)in
𝛼 (𝜃1, 𝜃2) = 1 + k𝛼𝜃

(n)in
3 are components of the shifter tensor on SaS. Here and in the following developments,

(… ),i stands for the partial derivatives with respect to coordinates 𝜃i; Greek indices 𝛼, 𝛽 range from 1 to 2; Latin indices
i, j, k, l range from 1 to 3.

Remark 1. As can be seen from (2), the transverse coordinates of inner SaS coincide with the coordinates of Cheby-
shev polynomial nodes (roots of the Chebyshev polynomial of degree In − 2). This fact has a great meaning for the
convergence of the SaS method.47

3 DESCRIPTION OF DEFORMED SHELL

A position vector of the deformed shell is written as

R = R + u, (5)

where u is the displacement vector, which is always measured in accordance with the total Lagrangian formulation from
the initial configuration to the current configuration directly. In particular, the position vectors of SaS of the nth layer are

R
(n)in = R(n)in + u(n)in , (6)

u(n)in = u
(
𝜃
(n)in
3

)
, (7)

where u(n)in (𝜃1, 𝜃2) are the displacement vectors of SaS of the nth layer.
The base vectors in the current shell configuration are defined as

gi = R,i = gi + u,i. (8)

In particular, the base vectors of deformed SaS of the nth layer (see Figure 2) are

g(n)in
𝛼 = R

(n)in
,𝛼 = g(n)in

𝛼 + u(n)in
,𝛼 , g(n)in

3 = g3

(
𝜃
(n)in
3

)
= e3 + 𝛃(n)in , (9)

𝛃(n)in = u,3

(
𝜃
(n)in
3

)
, (10)

where 𝛃(n)in (𝜃1, 𝜃2) are the derivative of the displacement vector with respect to coordinate 𝜃3 at SaS.
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FIGURE 2 Initial and current configurations of the shell [Colour figure can be viewed at wileyonlinelibrary.com]

The Green-Lagrange strain tensor in an orthogonal curvilinear coordinate system can be expressed as

2𝜀ij =
1

AiA𝑗cic𝑗
(
gi · g𝑗 − gi · g𝑗

)
, (11)

where A3 = 1 and c3 = 1. In particular, the Green-Lagrange strains of SaS of the nth layer 𝜀(n)in
𝑖𝑗 (𝜃1, 𝜃2) are

2𝜀(n)in
ij = 2𝜀ij

(
𝜃
(n)in
3

)
= 1

AiA𝑗c
(n)in
i c(n)in

𝑗

(
g(n)in

i · g(n)in
𝑗 − g(n)in

i · g(n)in
𝑗

)
. (12)

Substituting base vectors (4) and (9) in strain-displacement equations (12), one obtains

2𝜀(n)in
𝛼𝛽

= 1
A𝛼c(n)in

𝛼

u(n)in
,𝛼 · e𝛽 +

1
A𝛽c(n)in

𝛽

u(n)in
,𝛽

· e𝛼 +
1

A𝛼A𝛽c(n)in
𝛼 c(n)in

𝛽

u(n)in
,𝛼 · u(n)in

,𝛽
,

2𝜀(n)in
𝛼3 = 1

A𝛼c(n)in
𝛼

u(n)in
,𝛼 · e3 + 𝛃(n)in · e𝛼 +

1
A𝛼c(n)in

𝛼

u(n)in
,𝛼 · 𝛃(n)in ,

2𝜀(n)in
33 = 2𝛃(n)in · e3 + 𝛃(n)in · 𝛃(n)in .

(13)

Next, we represent the displacement vectors u(n)in and their derivatives 𝛃(n)in in the orthonormal basis ei as follows:

u(n)in = u(n)in
i ei, (14)

𝛃(n)in = 𝛽
(n)in
i ei. (15)

Here and in the following, the summation on repeated Latin indices is implied.
Using (14) and formulas for the derivatives of unit vectors ei with respect to orthogonal curvilinear coordinates,42 we

derive
1

A𝛼

u(n)in
,𝛼 = 𝜆

(n)in
𝑖𝛼

ei, (16)

where 𝜆
(n)in
𝑖𝛼

are the strain parameters of SaS of the nth layer expressed in terms of SaS displacements as

𝜆
(n)in
𝛼𝛼 = 1

A𝛼

u(n)in
𝛼,𝛼 + B𝛼u(n)in

𝛽
+ k𝛼u(n)in

3 , 𝜆
(n)in
𝛽𝛼

= 1
A𝛼

u(n)in
𝛽,𝛼

− B𝛼u(n)in
𝛼 for 𝛽 ≠ 𝛼,

𝜆
(n)in
3𝛼 = 1

A𝛼

u(n)in
3,𝛼 − k𝛼u(n)in

𝛼 , B𝛼 = 1
A𝛼A𝛽

A𝛼,𝛽 for 𝛽 ≠ 𝛼.
(17)

Substitution of Equations (15) and (16) in strain-displacement equations (13) yields

2𝜀(n)in
𝛼𝛽

= 1
c(n)in
𝛽

𝜆
(n)in
𝛼𝛽

+ 1
c(n)in
𝛼

𝜆
(n)in
𝛽𝛼

+ 1
c(n)in
𝛼 c(n)in

𝛽

𝜆
(n)in
𝑖𝛼

𝜆
(n)in
𝑖𝛽

,

2𝜀(n)in
𝛼3 = 1

c(n)in
𝛼

𝜆
(n)in
3𝛼 + 𝛽

(n)in
𝛼 + 1

c(n)in
𝛼

𝜆
(n)in
𝑖𝛼

𝛽
(n)in
i ,

2𝜀(n)in
33 = 2𝛽(n)in

3 + 𝛽
(n)in
i 𝛽

(n)in
i .

(18)
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Proposition 1. Three sets of functions 𝛽
(n)1
i , 𝛽

(n)2
i ,… , 𝛽

(n)In
i for each layer are linearly dependent, that is, there exist

numbers 𝛼(n)1, 𝛼(n)2,… , 𝛼(n)In , which are not all zero such that∑
in

𝛼(n)in𝛽
(n)in
i = 0. (19)

Proof. This statement is proved using the results.48

4 THROUGH-THE-THICKNESS DISPLACEMENT AND STRAIN
DISTRIBUTIONS

We start now with the first fundamental assumption of the proposed nonlinear higher-order shell theory. Let us assume
that the displacements are distributed through the thickness as follows:

u(n)
i =

∑
in

L(n)in u(n)in
i , 𝜃[n−1]

3 ≤ 𝜃3 ≤ 𝜃[n]3 , (20)

where L(n)in (𝜃3) are the Lagrange polynomials of degree In − 1 defined as

L(n)in =
∏
𝑗n≠in

𝜃3 − 𝜃
(n)𝑗n
3

𝜃
(n)in
3 − 𝜃

(n)𝑗n
3

. (21)

The use of Equations (10), (15), and (20) leads to

𝛽
(n)in
i =

∑
𝑗n

M(n)𝑗n

(
𝜃
(n)in
3

)
u(n)𝑗n

i , (22)

where M(n)𝑗n = L(n)𝑗n
,3 are the polynomials of degree In − 2; their values on SaS are

M(n)𝑗n

(
𝜃
(n)in
3

)
= 1

𝜃
(n)𝑗n
3 − 𝜃

(n)in
3

∏
kn≠in,𝑗n

𝜃
(n)in
3 − 𝜃

(n)kn
3

𝜃
(n)𝑗n
3 − 𝜃

(n)kn
3

for 𝑗n ≠ in,

M(n)in

(
𝜃
(n)in
3

)
= −

∑
𝑗n≠in

M(n)𝑗n

(
𝜃
(n)in
3

)
.

(23)

It is seen that the key functions 𝛽(n)in
i of the proposed higher-order shell formulation are represented according to (22)

as a linear combination of displacements of SaS u(n)𝑗n
i .

The following step consists in a choice of the consistent approximation of strains through the thickness of the shell. It
is apparent that the strain distribution should be chosen similar to displacement distribution (20):

𝜀
(n)
ij =

∑
in

L(n)in𝜀
(n)in
ij , 𝜃[n−1]

3 ≤ 𝜃3 ≤ 𝜃[n]3 . (24)

Theorem 1. The Green-Lagrange strain tensor (13) exactly represents large rigid-body motions of SaS in any curvilinear
coordinate system.

Proof. The arbitrarily large rigid-body motion of a shell (see, eg, paper51), can be described as

(u)Rigid = 𝚫 +𝚽R − R, (25)

where Δ = 𝛥iei is the constant translation vector; 𝚽 is the orthogonal rotation matrix. In particular, the rigid-body
motions of SaS are written as (

u(n)in
)Rigid = 𝚫 +𝚽R(n)in − R(n)in . (26)

It is apparent that the derivatives of the translation vector and rotation matrix with respect to surface coordinates
𝜃𝛼 are zero, that is,

𝚫,𝛼 = 𝟎, 𝚽,𝛼 = 𝟎. (27)
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Differentiating Equation (26) and taking into account (4) and (27), we obtain(
u(n)in
,𝛼

)Rigid
= A𝛼c(n)in

𝛼 (𝚽e𝛼 − e𝛼) . (28)

Using Equations (15), (22), and (26) and identities∑
𝑗n

M(n)𝑗n (𝜃3) = 0,
∑
𝑗n

𝜃
(n)𝑗n
3 M(n)𝑗n (𝜃3) = 1, (29)

which, in turn, follow from trivial identities∑
𝑗n

L(n)𝑗n (𝜃3) = 1,
∑
𝑗n

𝜃
(n)𝑗n
3 L(n)𝑗n (𝜃3) = 𝜃3, (30)

one obtains (
𝛃(n)in

)Rigid =
∑
𝑗n

M(n)𝑗n

(
𝜃
(n)in
3

) (
𝚽R(n)𝑗n − R(n)𝑗n

)
= 𝚽e3 − e3. (31)

It may be verified utilizing Equations (28) and (31) that strains (13) are zero in a general rigid-body shell motion

2
(
𝜀
(n)in
ij

)Rigid
= 𝚽ei ·𝚽e𝑗 − ei · e𝑗 = 0. (32)

This conclusion is true because the orthogonal transformation retains the scalar product of vectors.

Consequence 1. The Green-Lagrange strain tensor (24) exactly represents the large rigid-body motion of a shell in any
curvilinear coordinate system.

Proof. The use of Equations (24) and (32) and Theorem 1 leads to(
𝜀
(n)
ij

)Rigid
=
∑

in

L(n)in

(
𝜀
(n)in
ij

)Rigid
= 0 (33)

that completes the proof.

5 HU-WASHIZU VARIATIONAL EQUATION FOR LAMINATED SHELL

To develop the geometrically nonlinear hybrid stress-strain solid-shell element formulation, we have to invoke the
Hu-Washizu variational principle in which displacements, strains, and stresses are utilized as independent variables

𝛿JHW = 0, (34)

JHW = ∫∫
Ω

∑
n

𝜃
[n]
3

∫
𝜃
[n−1]
3

[1
2

e(n)ij C(n)
ijkle

(n)
kl − S(n)

ij

(
e(n)ij − 𝜀

(n)
ij

)]
A1A2c1c2d𝜃1d𝜃2d𝜃3 − W , (35)

W = ∫∫
Ω

(
c+1 c+2 p+

i u[N]
i − c−1 c−2 p−

i u[0]
i

)
A1A2d𝜃1d𝜃2 + WΣ, (36)

where S(n)
ij is the second Piola-Kirchhoff stress tensor of the nth layer; e(n)ij is the displacement-independent strain tensor

of the nth layer; C(n)
ijkl is the material tensor of the nth layer; u[0]

i and u[N]
i are the displacements of bottom and top surfaces;

c−𝛼 = 1− k𝛼h∕2 and c+𝛼 = 1+ k𝛼h∕2 are the components of the shifter tensor on outer surfaces; p−
i and p+

i are the tractions
on outer surfaces; WΣ is the work done by external loads applied to the edge surface Σ.

According to the SaS technique, we introduce the through-thickness approximations of stresses and
displacement-independent strains choosing them similar to the displacement-dependent strain approximation (24)

S(n)
ij =

∑
in

L(n)in S(n)in
ij , 𝜃[n−1]

3 ≤ 𝜃3 ≤ 𝜃[n]3 , (37)

e(n)ij =
∑

in

L(n)in e(n)in
ij , 𝜃[n−1]

3 ≤ 𝜃3 ≤ 𝜃[n]3 , (38)

where S(n)in
ij = S(n)

ij

(
𝜃
(n)in
3

)
is the second Piola-Kirchhoff stress tensor of SaS of the nth layer; e(n)in

ij = e(n)ij

(
𝜃
(n)in
3

)
is the

displacement-independent strain tensor of SaS of the nth layer.
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Substituting through-thickness distributions (24), (37), and (38) in Equations (34)-(36) and introducing the weighted
coefficients

Λ(n)in𝑗n =

𝜃
[n]
3

∫
𝜃
[n−1]
3

L(n)in L(n)𝑗n c1c2d𝜃3, (39)

the following variational equation in terms of SaS variables is obtained:

∫∫
Ω

∑
n

∑
in

∑
𝑗n

Λ(n)in𝑗n

[
𝛿
(
e(n)in

)T (S(n)𝑗n − C(n)e(n)𝑗n
)
+ 𝛿

(
S(n)in

)T (e(n)𝑗n − 𝛆(n)𝑗n
)

−𝛿
(
𝛆(n)in

)TS(n)𝑗n

]
A1A2d𝜃1d𝜃2 + 𝛿𝑊 = 0,

(40)

where
𝛆(n)in =

[
𝜀
(n)in
11 𝜀

(n)in
22 𝜀

(n)in
33 2𝜀(n)in

12 2𝜀(n)in
13 2𝜀(n)in

23

]T
,

e(n)in =
[

e(n)in
11 e(n)in

22 e(n)in
33 2e(n)in

12 2e(n)in
13 2e(n)in

23

]T
,

S(n)in =
[

S(n)in
11 S(n)in

22 S(n)in
33 S(n)in

12 S(n)in
13 S(n)in

23

]T
,

C(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(n)
1111 C(n)

1122 C(n)
1133 C(n)

1112 0 0
C(n)

2211 C(n)
2222 C(n)

2233 C(n)
2212 0 0

C(n)
3311 C(n)

3322 C(n)
3333 C(n)

3312 0 0
C(n)

1211 C(n)
1222 C(n)

1233 C(n)
1212 0 0

0 0 0 0 C(n)
1313 C(n)

1323

0 0 0 0 C(n)
2313 C(n)

2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(41)

6 GeX FOUR-NODE SOLID-SHELL ELEMENT FORMULATION

The finite element formulation is based on the simple interpolation of the shell via GeX four-node solid-shell elements

u(n)in
i =

∑
r

Nru(n)in
ir , (42)

Nr =
1
4
(1 + n1r𝜉1) (1 + n2r𝜉2) , (43)

n1r =

{
1 for r = 1, 4

−1 for r = 2, 3
, n2r =

{
1 for r = 1, 2

−1 for r = 3, 4
,

where Nr(𝜉1, 𝜉2) are the bilinear shape functions of the element; u(n)in
𝑖𝑟

are the displacements of SaS Ω(n)in at element
nodes; 𝜉𝛼 = (𝜃𝛼 − d𝛼)/𝓁𝛼 are the normalized curvilinear coordinates (see Figure 3); 2𝓁𝛼 are the lengths of the element in
(𝜃1, 𝜃2 )-space; the nodal index r runs from 1 to 4.

To implement the efficient analytical integration throughout the shell element, the extended ANS method23,42 is utilized
to interpolate the displacement-dependent strains

𝛆(n)in =
∑

r
Nr𝛆(n)in

r , (44)

𝛆(n)in
r =

[
𝜀
(n)in
11r 𝜀

(n)in
22r 𝜀

(n)in
33r 2𝜀(n)in

12r 2𝜀(n)in
13r 2𝜀(n)in

23r

]T
, (45)

where 𝜀
(n)in
ijr are the strains of SaS of the nth layer at element nodes.

The idea of such approach can be traced back to the ANS method developed by many scientists3-5,7,9-16 to cure the
isoparametric nonlinear solid-shell elements from shear and membrane locking. In contrast to conventional ANS for-
mulations, we treat the term ANS in a broader sense. In the GeX four-node solid-shell element formulation, the
displacement-dependent strains of SaS are assumed to vary bilinearly throughout the biunit square in (𝜉1, 𝜉2)-space.
The extended ANS method (44) makes possible to utilize the element nodes as sampling points that helps to avoid the
expensive Gauss numerical integration.
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FIGURE 3 Biunit square in (𝜉1, 𝜉2)-space mapped into the middle surface of the GeX solid-shell element in (x1, x2, x3)-space

Remark 2. In order to circumvent curvature thickness locking for the finite rotation isoparametric four-node
solid-shell element, Betsch and Stein56 proposed to employ the bilinear interpolation (44) for the transverse normal
strain. It is apparent that curvature thickness locking is not related to the GeX four-node solid-shell element because
it can handle the arbitrary geometry of surfaces properly. We advocate the use of the extended ANS method (44) for
all components of the Green-Lagrange strain tensor to implement the effective analytical integration throughout the
element.

Owing to strain-displacement equations (18), the nodal strains of SaS of the nth layer (45) are written as

2𝜀(n)in
𝛼𝛽𝑟

= 1
c(n)in
𝛽𝑟

𝜆
(n)in
𝛼𝛽𝑟

+ 1
c(n)in
𝛼𝑟

𝜆
(n)in
𝛽𝛼𝑟

+ 1
c(n)in
𝛼𝑟 c(n)in

𝛽𝑟

𝜆
(n)in
𝑖𝛼𝑟

𝜆
(n)in
𝑖𝛽𝑟

,

2𝜀(n)in
𝛼3r = 𝛽

(n)in
𝛼𝑟 + 1

c(n)in
𝛼𝑟

𝜆
(n)in
3𝛼𝑟 + 1

c(n)in
𝛼𝑟

𝜆
(n)in
𝑖𝛼𝑟

𝛽
(n)in
𝑖𝑟

, 2𝜀(n)in
33r = 2𝛽(n)in

3r + 𝛽
(n)in
𝑖𝑟

𝛽
(n)in
𝑖𝑟

,

(46)

where c(n)in
𝛼𝑟 = 1 + k𝛼𝑟𝜃

(n)in
3 are the nodal values of the shifter tensor on SaS; 𝜆(n)in

𝑖𝛼𝑟
and 𝛽

(n)in
ir are the strain parameters

and displacement derivatives on SaS at element nodes.
Using (17), (22), and (42) and introducing the displacement vector of the shell element

q =
[
qT

1 qT
2 qT

3 qT
4
]T
, (47)

qr =
[(

u[0]
r
)T(u(1)2

r

)T
· · ·

(
u(1)I1−1

r

)T(
u[1]

r
)T(u(2)2

r

)T
· · ·

(
u(N−1)IN−1−1

r

)T(
u[N−1]

r
)T(u(N)2

r

)T
· · ·

(
u(N)IN−1

r

)T(
u[N]

r
)T
]T

,

u[m]
r =

[
u[m]

1r u[m]
2r u[m]

3r
]T
, u(n)mn

r =
[
u(n)mn

1r u(n)mn
2r u(n)mn

3r

]T
,

where u[0]
ir and u[N]

ir are the nodal displacements of bottom and top surfaces; u[m]
𝑖𝑟

are the nodal displacements of
interfaces Ω[m], one derives

𝜆
(n)in
𝑖𝛼𝑟

=
(
𝚵(n)in
𝑖𝛼𝑟

)T
q, 𝛽

(n)in
ir =

(
𝚵(n)in

i3r

)T
q, (48)

where 𝚵(n)in
ijr are the constant vectors of order 12NSaS (the explicit form of these vectors is given in Appendix A);

NSaS =
∑

nIn − N+1 is the total number of SaS.
From Equations (45), (46), and (48) follow

𝛆(n)in
r =

(
B(n)in

r + A(n)in
r (q)

)
q, (49)
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where B(n)in
r and A(n)in

r (q) are the nodal matrices of order 6 × 12NSaS corresponding to linear and nonlinear
strain-displacement transformations defined as

B(n)in
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
c(n)in

1r

)−1(
𝚵(n)in

11r

)T

(
c(n)in

2r

)−1(
𝚵(n)in

22r

)T

(
𝚵(n)in

33r

)T

(
c(n)in

2r

)−1(
𝚵(n)in

12r

)T
+
(

c(n)in
1r

)−1(
𝚵(n)in

21r

)T

(
𝚵(n)in

13r

)T
+
(

c(n)in
1r

)−1(
𝚵(n)in

31r

)T

(
𝚵(n)in

23r

)T
+
(

c(n)in
2r

)−1(
𝚵(n)in

32r

)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A(n)in
r (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT𝚷(n)in
11r

qT𝚷(n)in
22r

qT𝚷(n)in
33r

qT𝚷(n)in
12r

qT𝚷(n)in
13r

qT𝚷(n)in
23r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (50)

where 𝚷(n)in
ijr are the symmetric matrices of order 12NSaS × 12NSaS given by

𝚷(n)in
ijr = 1

2c(n)in
ir c(n)in

jr

𝚵(n)in
kir

(
𝚵(n)in

kjr

)T
for i = 𝑗,

𝚷(n)in
ijr = 1

2c(n)in
ir c(n)in

jr

[
𝚵(n)in

kir

(
𝚵(n)in

kjr

)T
+ 𝚵(n)in

kjr

(
𝚵(n)in

kir

)T
]

for i < 𝑗.

(51)

For further developments, it is convenient to rewrite the ANS interpolation (44) as follows:

𝛆(n)in =
∑
r1,r2

(𝜉1)r1 (𝜉2)r2𝛆(n)in
r1r2

, (52)

𝛆(n)in
r1r2

=
(

B(n)in
r1r2

+ A(n)in
r1r2

(q)
)

q, (53)
where

𝛆(n)in
r1r2

=
[
𝜀
(n)in
11r1r2

𝜀
(n)in
22r1r2

𝜀
(n)in
33r1r2

2𝜀(n)in
12r1r2

2𝜀(n)in
13r1r2

2𝜀(n)in
23r1r2

]T
, (54)

B(n)in
00 = 1

4

(
B(n)in

1 + B(n)in
2 + B(n)in

3 + B(n)in
4

)
, B(n)in

01 = 1
4

(
B(n)in

1 + B(n)in
2 − B(n)in

3 − B(n)in
4

)
,

B(n)in
10 = 1

4

(
B(n)in

1 − B(n)in
2 − B(n)in

3 + B(n)in
4

)
, B(n)in

11 = 1
4

(
B(n)in

1 − B(n)in
2 + B(n)in

3 − B(n)in
4

)
,

(55)

A(n)in
r1r2

(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT𝚷(n)in
11r1r2

qT𝚷(n)in
22r1r2

qT𝚷(n)in
33r1r2

qT𝚷(n)in
12r1r2

qT𝚷(n)in
13r1r2

qT𝚷(n)in
23r1r2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (56)

where 𝚷(n)in
ijr1r2

are the symmetric matrices for i ≤ j of order 12NSaS × 12NSaS defined as

𝚷(n)in
ij00 = 1

4

(
𝚷(n)in

ij1 +𝚷(n)in
ij2 +𝚷(n)in

ij3 +𝚷(n)in
ij4

)
, 𝚷(n)in

ij01 = 1
4

(
𝚷(n)in

ij1 +𝚷(n)in
ij2 −𝚷(n)in

ij3 −𝚷(n)in
ij4

)
,

𝚷(n)in
ij10 = 1

4

(
𝚷(n)in

ij1 −𝚷(n)in
ij2 −𝚷(n)in

ij3 +𝚷(n)in
ij4

)
, 𝚷(n)in

ij11 = 1
4

(
𝚷(n)in

ij1 −𝚷(n)in
ij2 +𝚷(n)in

ij3 −𝚷(n)in
ij4

)
.

(57)

Here and in the following, the indices r1 and r2 run from 0 to 1.
To circumvent shear and membrane locking and have no spurious zero energy modes, the robust stress

interpolation23,51 is utilized
S(n)in =

∑
r1+r2<2

(𝜉1)r1(𝜉2)r2 Qr1r2 S(n)in
r1r2

, (58)

S(n)in
00 =

[
𝜑
(n)in
1 𝜑

(n)in
2 𝜑

(n)in
3 𝜑

(n)in
4 𝜑

(n)in
5 𝜑

(n)in
6

]T
,

S(n)in
01 =

[
𝜑
(n)in
7 𝜑

(n)in
9 𝜑

(n)in
11

]T
, S(n)in

10 =
[
𝜑
(n)in
8 𝜑

(n)in
10 𝜑

(n)in
12

]T
,
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where Qr1r2 are the projective matrices given by

Q00 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, Q01 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
, Q10 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (59)

The similar interpolation can be used for displacement-independent strains

e(n)in =
∑

r1+r2<2
(𝜉1)r1(𝜉2)r2 Qr1r2 e(n)in

r1r2
, (60)

e(n)in
00 =

[
𝜓

(n)in
1 𝜓

(n)in
2 𝜓

(n)in
3 𝜓

(n)in
4 𝜓

(n)in
5 𝜓

(n)in
6

]T
,

e(n)in
01 =

[
𝜓

(n)in
7 𝜓

(n)in
9 𝜓

(n)in
11

]T
, e(n)in

10 =
[
𝜓

(n)in
8 𝜓

(n)in
10 𝜓

(n)in
12

]T
.

Remark 3. Due to interpolation (60), we introduce 12 assumed strain parameters 𝜓 (n)in
1 , 𝜓

(n)in
2 ,… , 𝜓

(n)in
12 for each SaS,

ie, 12NSaS for all SaS. It seems to be excessive for the four-node solid-shell element with 12NSaS displacement DOF.
However, there exist six dependent strain modes, which provide a correct rank of the element stiffness matrix.48 This
statement can be proved with the help of Proposition 1.

Substituting interpolations (42), (52), (58), and (60) into the Hu-Washizu variational equation (40) and replacing the
metric product A1A2 in surface integrals by its value at the element center, one can integrate analytically throughout the
finite element. As a result, the following equilibrium equations of the GeX hybrid-mixed solid-shell element are obtained:∑

𝑗n

Λ(n)in𝑗n

(
S(n)𝑗n

r1r2
− QT

r1r2
C(n)Qr1r2 e(n)𝑗n

r1r2

)
= 0 for r1 + r2 < 2, (61)

∑
𝑗n

Λ(n)in𝑗n

[
e(n)𝑗n

r1r2
− QT

r1r2

(
B(n)𝑗n

r1r2
+ A(n)𝑗n

r1r2
(q)

)
q
]
= 0 for r1 + r2 < 2, (62)∑

n

∑
in

∑
𝑗n

Λ(n)in𝑗n
∑

r1+r2<2

1
3r1+r2

(
B(n)in

r1r2
+ 2A(n)in

r1r2
(q)

)T
Qr1r2 S(n)𝑗n

r1r2
= F, (63)

where F is the surface traction vector.
Due to the fact that det

(
Λ(n)in𝑗n

) ≠ 0 for each layer (see Proposition 2 in Appendix B), the equilibrium equations (61)
and (62) can be simplified

S(n)in
r1r2

= QT
r1r2

C(n)Qr1r2 e(n)in
r1r2

for r1 + r2 < 2, (64)

e(n)in
r1r2

= QT
r1r2

(
B(n)in

r1r2
+ A(n)in

r1r2
(q)

)
q for r1 + r2 < 2. (65)

7 INCREMENTAL TOTAL LAGRANGIAN FORMULATION

Up to this moment, no incremental arguments are needed in the total Lagrangian formulation. The incremental dis-
placements, strains, and stresses are needed for solving nonlinear equilibrium equations (63)-(65) by a Newton-Raphson
method. Further, the left superscripts t and t+Δt indicate in which configuration at time t or time t+Δt a quantity occurs.
In accordance with this agreement, we have

t+ΔtS(n)in
r1r2

= tS(n)in
r1r2

+ ΔS(n)in
r1r2

, t+Δte(n)in
r1r2

= te(n)in
r1r2

+ Δe(n)in
r1r2

,

t+Δtq = tq + Δq, t+ΔtF = tF + ΔF,
(66)

where ΔS(n)in
r1r2

,Δe(n)in
r1r2

,Δq, and ΔF are the incremental variables.
Substituting (66) in equilibrium equations (63)-(65) and taking into account that the external loads and the second

Piola-Kirchhoff stress constitute the self-equilibrated system in a configuration at time t, one obtains the incremental
equations

ΔS(n)in
r1r2

= QT
r1r2

C(n)Qr1r2Δe(n)in
r1r2

for r1 + r2 < 2, (67)

Δe(n)in
r1r2

= QT
r1r2

(
tM(n)in

r1r2
+ A(n)in

r1r2
(Δq)

)
Δq for r1 + r2 < 2, (68)
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∑
n

∑
in

∑
𝑗n

Λ(n)in𝑗n
∑

r1+r2<2

1
3r1+r2

[
2
(

A(n)in
r1r2

(Δq)
)T

Qr1r2
tS(n)

r1r2
𝑗n

+
(

tM(n)in
r1r2

+ 2A(n)in
r1r2

(Δq)
)T

Qr1r2ΔS(n)𝑗n
r1r2

]
= ΔF,

(69)

where
tM(n)in

r1r2
= B(n)in

r1r2
+ 2A(n)in

r1r2

( tq
)
. (70)

Because of incremental equations (68) and (69) are nonlinear, the Newton-Raphson method is employed to linearize
them, that is,

ΔS(n)in[k+1]
r1r2

= ΔS(n)in[k]
r1r2

+ ΔS̃(n)in[k]
r1r2

, Δe(n)in[k+1]
r1r2

= Δe(n)in[k]
r1r2

+ Δẽ(n)in[k]
r1r2

,

Δq[k+1] = Δq[k] + Δq̃[k], k = 0, 1,… ,NIter,
(71)

where NIter is the number of iterations. By using a standard technique, we arrive at the system of linearized equilibrium
equations

ΔS̃(n)in[k]
r1r2

= QT
r1r2

C(n)Qr1r2Δẽ(n)in[k]
r1r2

for r1 + r2 < 2, (72)

Δẽ(n)in[k]
r1r2

− QT
r1r2

tL(n)in
r1r2

(
Δq[k]

)
Δq̃[k]

= QT
r1r2

(
tL(n)in

r1r2

(
Δq[k]

)
− A(n)in

r1r2

(
Δq[k]

))
Δq[k] − Δe(n)in[k]

r1r2
for r1 + r2 < 2,

(73)

∑
n

∑
in

∑
𝑗n

Λ(n)in𝑗n
∑

r1+r2<2

1
3r1+r2

[
2
(

A(n)in
r1r2

(
Δq̃[k]

))T
Qr1r2

(
tS(n)𝑗n

r1r2
+ ΔS(n)𝑗n[k]

r1r2

)
+
(

tL(n)in
r1r2

(
Δq[k]

))T
× Qr1r2ΔS̃(n)𝑗n[k]

r1r2
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where
tL(n)in

r1r2

(
Δq[k]

)
= B(n)in

r1r2
+ 2A(n)in
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(
tq + Δq[k]

)
. (75)

Owing to Proposition 3 (see Appendix B), Equation (74) can be written in a more convenient form∑
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(76)

Eliminating incremental stresses S̃(n)in[k]
r1r2

and strains Δẽ(n)in[k]
r1r2

from Equations (72), (73), and (76), we arrive at the
system of linear equations

KT𝚫q̃[k] = 𝚫F[k], (77)
where KT = KD+KH is the tangent stiffness matrix of order 12NSaS × 12NSaS; 𝚫F[k] is the right-hand side vector given by

KD =
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, (78)
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𝚫F[k] = 𝚫F −
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(80)

where
C(n)

r1r2
= Qr1r2 QT

r1r2
C(n)Qr1r2 QT

r1r2
. (81)

For computing the incremental stressesΔS(n)in[k]
r1r2

from Equation (79), we employ the advanced finite element technique
based on the use of linearized equations (67) and (68)

ΔS(n)in[k]
r1r2

= QT
r1r2

C(n)Qr1r2Δe(n)in[k]
r1r2

for r1 + r2 < 2, (82)

Δe(n)in[k]
r1r2

= QT
r1r2

(
tL(n)in

r1r2

(
Δq[k−1]

)
Δq[k] − A(n)in

r1r2

(
Δq[k−1]

)
Δq[k−1]

)
for r1 + r2 < 2. (83)
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These equations hold for k ≥ 1 and, at the beginning of each iteration process, one should set

Δq[0] = 𝟎, Δe(n)in[0]
r1r2

= 𝟎. (84)

The proposed incremental approach allows the use of load increments, which are much larger than possible with GeX
displacement-based solid-shell element formulations.1,8 This is because of the fact that an additional load vector due to
compatibility mismatch (82) and (83) at the kth iteration step is present in linearized equilibrium equations (77) and
disappears only at the end of the iteration process as discussed in works.8,57-59

Remark 4. As expected, the tangent stiffness matrix KT is symmetric. This is due to the symmetry of matrices KD
and KH. The symmetry of the latter matrix follows directly from the symmetry of matrices H(n)in

r1r2
(see Proposition 3 in

Appendix B).

Remark 5. To calculate the weighted coefficients Λ(n)in𝑗n from Equations (78)-(80), we utilize the (In+1)-point Gaus-
sian quadrature rule in order to fulfill exact integration in (39). This is sufficient because L(n)in are the Lagrange basis
polynomials of degree In − 1 and c𝛼 are the first degree polynomials.

Remark 6. It is worth noting that the element matrices (78)-(80) are evaluated with no expensive numerical matrix
inversion that is impossible in the framework of the conventional isoparametric hybrid-mixed solid-shell element
formulation.1,2,4,5,9,14 Recalling that the tangent stiffness matrix is computed by using analytical integration throughout
the element, the developed nonlinear GeX solid-shell element is very economical and efficient. Moreover, it permits
the use of extremely coarse meshes as demonstrated in benchmarks considered in Section 8.

The equilibrium equations (77) for each element are assembled by a standard technique to form the global equilib-
rium equations. These incremental equations should be performed until the required accuracy of the solution is reached.
Herein, two convergence criteria are employed to assess the potential of the proposed GeX four-node solid-shell element

‖‖‖ΔU[k+1] − ΔU[k]‖‖‖ < 𝜀
‖‖‖ΔU[k]‖‖‖ , (85)

‖‖‖r[k] ‖‖‖ < 𝜀 ‖‖r[0] ‖‖ , (86)

where ||… ||stands for the Euclidean norm; ΔU is the global vector of displacement increments; r is the residual vector;
𝜀 is the prescribed tolerance.

8 BENCHMARK PROBLEMS

The performance of the developed GeX laminated composite four-node solid-shell element called the GeXSaS4 element is
evaluated with nonlinear seven- and nine-parameter solid-shell elements and solid elements extracted from the literature.
A listing of the elements and the abbreviations used to identify them are contained in Table 1. The derived results are
compared with those based as a rule on using the identical node spacing and the same convergence criterion and tolerance.
In this section, NStep denotes a number of load steps employed to equally divide the maximum load, whereas NIter stands
for a total number of Newton iterations.

TABLE 1 Listing of nonlinear shell elements

Name Description

GeXSaS4 GeX four-node SaS solid-shell element developed
GeX7P4 GeX seven-parameter four-node solid-shell element18

GeX9P4 GeX nine-parameter four-node solid-shell element23

GeX7PH GeX seven-parameter higher-order solid-shell element17

ISO7PH Isoparametric seven-parameter higher-order solid-shell element20

Solid45 Isoparametric ANSYS four-node solid element60
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FIGURE 4 Cantilever plate strip subjected to end shear loading [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Convergence study for the angle-ply plate strips under shear load F = 5 using three SaS inside each layer
and the displacement-based criterion with 𝜀 = 10−4

[−45/45/−45/45] [30/−60/−60/30]
Solid45a Solid45a

Mesh 4 × 2 8 × 4 16 × 4 32 × 8 64 × 8 4 × 2 8 × 4 16 × 4 32 × 8 64 × 8
64 × 8 64 × 8

u3 (A) 8.373 8.343 8.353 8.363 8.366 8.365 8.067 8.048 8.053 8.061 8.064 8.063
−u1 (A) 6.174 6.134 6.145 6.158 6.161 6.158 5.585 5.563 5.568 5.579 5.581 5.579
NStep 1 1 1 1 1 105 1 1 1 1 1 50
NIter 6 6 6 6 6 362 6 6 6 6 6 221

aTwo elements were used through the layer thickness that corresponds to a chosen number of SaS.

TABLE 3 Euclidean norm of displacement and residual
vectors during equilibrium iterations for the
[−45/45/−45/45] plate strip for a different number of SaS
inside each layer In using 32 × 8 mesh when the total load
F = 5 is applied in one single step||U[n+1] − U[n]|| || r[n]||

Iteration In = 3 In = 4 In = 3 In = 4

0 1.19E+03 1.43E+03 1.21E+00 1.21E+00
1 5.83E+02 7.01E+02 3.75E+07 3.76E+07
2 2.67E+02 3.21E+02 4.70E+06 4.71E+06
3 1.01E+02 1.21E+02 5.88E+05 5.89E+05
4 2.13E+01 2.56E+01 6.71E+04 6.73E+04
5 1.52E+00 1.83E+00 4.37E+03 4.39E+03
6 2.03E−02 2.44E−02 4.19E+01 4.21E+01
7 2.01E−05 2.42E−05 7.47E−03 7.52E−03
8 1.35E−11 6.77E−11 6.13E−09 1.31E−08
9 1.06E−11 6.72E−11 4.58E−09 1.40E−08

8.1 Cantilever plate strip under end shear loading
This example has been considered by many researchers to test the nonlinear shell elements for thin-walled structures
undergoing finite rotations (see, eg, papers17,20,61). The strip with geometric parameters L = 10, h = 0.1, and b = 1 is
subjected to the end shear load F as shown in Figure 4. We study the laminated composite plate strips with material
properties EL = 106, ET = 0.3 × 106, GLT = 0.15 × 106, GTT = 0.12 × 106, and 𝜈LT = 𝜈TT = 0.25.

Table 2 lists the results of the convergence study through longitudinal and transverse displacements of the middle
surface u1 and u3 at point A choosing three SaS inside each layer for the angle-ply plate strips with stacking sequences
[−45/45/−45/45] and [30/−60/−60/30]. A comparison with the ANSYS Solid45 element is also given. It is seen that only
one loading step and six iterations are needed to find the converged solution with the chosen criterion and tolerance.
The use of coarse meshes is also available. Table 3 exhibits the monotonic convergence of the Newton-Raphson method
via the Euclidean norm of displacement and residual vectors during equilibrium iterations for the angle-ply plate strip
[−45/45/−45/45] using 32 × 8 mesh when the total load F = 5 is applied in one single step.

Figure 5 shows the displacements of the middle surface at point A of laminated plate strips versus tip load F using three
SaS for each layer compared to those obtained by ISO7PH element.20 As can be seen, the results agree closely but the

http://wileyonlinelibrary.com
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FIGURE 5 Transverse displacement of the middle surface u3 (A) of cross-ply and angle-ply plate strips vs tip load F: GeXSaS4 element
using three SaS inside each layer and 32 × 8 mesh (○) and ISO7PH element20 (□)

FIGURE 6 Through-thickness distributions of the second Piola-Kirchhoff stress for the angle-ply [−45/45/−45/45] plate strip under tip
load F = 5 at points B and C: GeXSaS4 element using four SaS inside each layer and 128 × 16 mesh (solid lines) and Solid45 element60 using
128 × 16 × 3 mesh for each layer (○) and (□) [Colour figure can be viewed at wileyonlinelibrary.com]

developed GeXSaS4 element is less expensive owing to the economical derivation of its tangent stiffness matrix. Figures 6
and 7 present the through-thickness distribution of the second Piola-Kirchhoff stress tensor for the angle-ply plate strips
[−45/45/−45/45] and [30/−60/−60/30] at points B and C utilizing four SaS inside the layers and a fine mesh 128 × 16.
The results are compared with the Solid45 element using the same fine mesh with three elements through the layer
thicknesses that corresponds to a chosen number of SaS. One can see that the Solid45 element leads to a poor prediction
for the transverse stresses. It should be noted that it is impossible to satisfy the boundary conditions on bottom and top
surfaces and the continuity conditions at interfaces choosing a more number of elements in the thickness direction.

http://wileyonlinelibrary.com
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FIGURE 7 Through-thickness distributions of the second Piola-Kirchhoff stress for the angle-ply [30/−60/−60/30] plate strip under load
F = 5 at points B and C: GeXSaS4 element using four SaS inside each layer and 128 × 16 mesh (solid lines) and Solid45 element60 using
128 × 16 × 3 mesh for each layer (○) and (□) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Slit annular plate: geometry and deformed configuration of the [90/0/90] plate under load F = 1.8 (modeled by 12 × 60 mesh)

8.2 Slit annular plate under line load
The annular plate is subjected to a line load F applied at the free edge of the slit as shown in Figure 8, whereas the other
edge is fully clamped. Such problem is a good test to verify the ability of the GeXSaS4 element to model rigid-body motions
and assess the analytical integration schemes developed. It is apparent that, in the framework of the GeX solid-shell
element formulation, we simulate the annular plate as a shell of revolution with the following coefficients of the first and
second fundamental forms and Christoffel symbols:

A1 = 1, A2 = 𝜃1, k1 = 0, k2 = 0,
B1 = 0, B2 = 1∕𝜃1, 𝜃1 ∈

[
R−,R+] , 𝜃2 ∈ [0, 2𝜋 ] .

(87)

We consider laminated composite plates with the material properties EL = 2 × 107, ET = 6 × 106, GLT = 3 × 106,
GTT = 2.4 × 106, 𝜈LT = 0.3, and 𝜈TT = 0.25. The geometric parameters are taken to be R− = 6, R+ = 10, and h = 0.03. Table 4

http://wileyonlinelibrary.com
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TABLE 4 Convergence study for the [90/0/90] annular plate under lifting load F = 1.8 using the displacement-based
criterion with 𝜀 = 10−4

I1 = I2 = I3 = 3 I1 = I2 = I3 = 4
Mesh 2 × 10 4 × 20 6 × 30 8 × 40 12 × 60 24 × 120 2 × 10 4 × 20 6 × 30 8 × 40 12 × 60 24 × 120

u3 (A) 13.91 13.91 14.30 14.49 14.64 14.75 13.94 13.91 14.31 14.49 14.65 14.75
u3 (B) 17.22 17.31 17.72 17.92 18.07 18.18 17.25 17.32 17.72 17.92 18.07 18.17
NStep 2 3 3 3 3 5 3 3 3 3 3 5
NIter 14 14 16 15 21 23 15 14 16 15 21 23

FIGURE 9 Transverse displacements of the middle surface u3 (B) of cross-ply annular plates vs load F: GeXSaS4 element using three SaS
inside each layer and 12 × 60 mesh (○) and GeX7PH element17 (□)

presents the results of the convergence study due to mesh refinement for the cross-ply plate [90/0/90] subjected to load
F = 1.8 via transverse displacements of the middle surface at points A and B using three and four SaS inside the layers. To
obtain a converged solution with the chosen criterion and tolerance, we utilized for different finite element meshes from
two to five equal load steps.

Figure 9 displays the load-displacement curves for cross-ply composite annular plates using three SaS inside each layer
and 12 × 60 mesh. A comparison with the GeX7PH element17 is also given. Figure 10 shows the through-thickness distri-
bution of the second Piola-Kirchhoff stress tensor at point C(8,𝜋) for the composite plate [90/0/90] with three and four
SaS for each layer. These results demonstrate the high potential of the GeXSaS4 element because the boundary conditions
on bottom and top surfaces and the continuity conditions at interfaces for transverse stress components are satisfied well
in the case of using more than three SaS inside the layers.

8.3 Cylindrical shell with free edges under pulling forces
Next, we consider one of the most popular benchmarks.8,14,17,20,61 A cylindrical shell with free edges is subjected to opposite
pulling forces F. This example is a severe test for nonlinear finite elements because the shell undergoes very large displace-
ments and rotations (see Figure 11). We study an isotropic shell with the material properties E = 1.05× 107 and 𝜈 = 0.3125,
and cross-ply composite shells with the material properties EL = 107, ET = 0.3 × 107, GLT = 0.15 × 107, GTT = 0.12 × 107,
and 𝜈LT = 𝜈TT = 0.25. The geometric parameters of cylindrical shells are L = 10.35, R = 4.953, and h = 0.094.

Due to symmetry of the problem, only one octant of the shell is modeled by regular meshes depicted in Figure 11.
Table 5 lists the results of the convergence study through the transverse displacements of the middle surface at points A,
B, and C using three SaS inside each layer for the cross-ply cylindrical shells with stacking sequences [0/90] and [90/0]
under pulling forces F = 6000 compared to the ANSYS Solid45 element. The stacking sequence [0/90] implies that the
fibers coincide with the axial and circumferential directions in inner and outer layers, respectively. It is seen that, again,
only one load step with from 7 to 11 Newton iterations is needed to find the converged solution with the chosen criterion
and tolerance except for the [90/0] shell with a fine mesh. Table 6 shows the time taken by a PC (AMD Ryzen 7 2700X
CPU 8-Core Processor, 4.0 GHz) to execute one Newton iteration for equivalent single-layer models18,23 using the GeX7P4
and GeX9P4 elements and the developed layerwise model with a different number of SaS using the GeXSaS4 element.
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FIGURE 10 Through-thickness distribution of the second Piola-Kirchhoff stress for the cross-ply [90/0/90] annular plate under load
F = 1.8 at point C for a different number of SaS inside each layer In (n = 1, 2, and 3) using 24 × 120 mesh [Colour figure can be viewed at
wileyonlinelibrary.com]

The rows of Table 6 display the computation time needed for coarse and fine meshes normalized with respect to the time
of the seven-parameter model.

Figures 12 and 13 present load-displacement curves for the isotropic and laminated cylindrical shells using three SaS
for each layer compared to those obtained by Sze et al.61 As can be seen, the results agree closely. Figures 14 and 15 show
the through-thickness distribution of the second Piola-Kirchhoff stress tensor for composite cylindrical shells [0/90] and
[90/0] at point D(L/4,𝜋/4) using three and four SaS inside the layers and 36 × 54 mesh. The results are compared with the
Solid45 element using the same fine mesh with three elements through the layer thicknesses that corresponds to a selected
number of SaS. It is seen that the Solid45 element leads again to a poor distribution of the transverse stress components of
the second Piola-Kirchhoff stress tensor. Note that this one does not allow the fulfillment of boundary conditions on the
bottom and top surfaces and continuity conditions at the interfaces even in the case of using a larger number of elements
in the thickness direction.

http://wileyonlinelibrary.com
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FIGURE 11 One octant of the cylindrical shell under pulling forces: geometry and deformed configuration in the case of the isotropic
material and F = 20 000 (modeled by 24 × 36 mesh)

TABLE 5 Convergence study for the cross-ply cylindrical shells under pulling forces F = 6000 using three SaS inside each
layer and the displacement-based criterion with 𝜀 = 10−4

[0/90] [90/0]
Solid45a Solid45a

Mesh 4 × 6 8 × 12 16 × 24 24 × 36 36 × 54 4 × 6 8 × 12 16 × 24 24 × 36 36 × 54
36 × 54 36 × 54

u3 (A) 2.165 2.269 2.309 2.319 2.326 2.311 2.117 2.229 2.268 2.279 2.284 2.291
−u3 (B) 3.584 3.303 3.342 3.350 3.353 3.334 3.429 3.254 3.294 3.302 3.305 3.314
−u3 (C) 3.157 3.412 3.446 3.452 3.456 3.433 3.181 3.396 3.429 3.436 3.438 3.447
NStep 1 1 1 1 1 13 1 1 1 1 4 11
NIter 9 7 7 7 11 76 7 7 7 7 29 72

aTwo elements were used through the layer thickness that corresponds to a chosen number of SaS.

TABLE 6 CPU time required to execute one Newton iteration

Mesh Equivalent Single-Layer Models Layerwise Model (GeXSaS4 Element)
7-Parameter Model 9-Parameter Model I1 = I2 = 3 I1 = I2 = 4 I1 = I2 = 5
(GeX7P4 Element) (GeX9P4 Element)

4 × 6 1 2.9 35 94 244
16 × 24 1 2.6 26 76 178
36 × 54 1 2.3 22 63 133

FIGURE 12 Transverse displacements of the middle surface at points A, B, and C of the isotropic cylindrical shell vs force F: GeXSaS4
element using three SaS and 24 × 36 mesh (○) and ABAQUS S4R element61 (□)
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FIGURE 13 Transverse displacements of the middle surface at points A, B, and C of the cross-ply cylindrical shells vs force F: GeXSaS4
element using three SaS inside each layer and 24 × 36 mesh (○)

FIGURE 14 Through-thickness distribution of the second Piola-Kirchhoff stress for the [90/0] cylindrical shell under force F = 6000 at
point D: GeXSaS4 element for a different number of SaS inside each layer In (n = 1 and 2) using 36 × 54 mesh (solid lines) and Solid45
element using 36 × 54 × 3 mesh for each layer (○) [Colour figure can be viewed at wileyonlinelibrary.com]

8.4 Cross-ply hyperbolic shell under two pairs of pulling and pinching forces
Finally, we study laminated composite hyperbolic shells with the stacking sequences [90/0/90] and [0/90/0] under two
pairs of opposite pulling and pinching forces F = 400. This problem is an excellent benchmark to test additionally the
proposed analytical integration schemes because we deal here with a doubly curved shell with variable coefficients of
the first and second fundamental forms and Christoffel symbols of the middle surface (parameters 𝜌 and 𝜏 are given in
Figure 16):

A1 =

√
1 +

𝜏2𝜃2
1

𝜌2 , A2 = 𝜌, k1 = − 𝜏r2

𝜌3A3
1
, k2 = 1

𝜌A1
,

B1 = 0, B2 = 𝜏𝜃1

𝜌2A1
, 𝜃1 ∈ [−L,L] , 𝜃2 ∈ [0, 2𝜋] .

(88)
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FIGURE 15 Through-thickness distribution of the second Piola-Kirchhoff stress for the [0/90] cylindrical shell under force F = 6000 at
point D: GeXSaS4 element for a different number of SaS inside each layer In (n = 1 and 2) using 36 × 54 mesh (solid lines) and Solid45
element using 36 × 54 × 3 mesh for each layer (○) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 16 One octant of the cross-ply hyperbolic shell under two pairs of pulling and pinching forces: geometry and deformed
configurations for [90/0/90] shell (left figure) and [0/90/0] shell (right figure); modeled by using three SaS inside each layer and 32 × 32 mesh

http://wileyonlinelibrary.com
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The geometric parameters of the shell are L = 20, r = 7.5, R = 15, and h = 0.04. The material properties of the composite
are taken as EL = 4 × 107, ET = 106, GLT = GTT = 6 × 105, and 𝜈LT = 𝜈TT = 0.25. Due to symmetry of the problem, only
one octant of the shell is modeled by regular meshes depicted in Figure 16. Table 7 lists the results of the convergence
study due to mesh refinement via the transverse displacements of the middle surface at points A and C choosing three
SaS inside the layers. A comparison with the GeX9P4 solid-shell element is presented. Table 8 demonstrates the mono-
tonic convergence of the Newton-Raphson method via the Euclidean norm of displacement and residual vectors during
equilibrium iterations for the [90/0/90] shell when the total load F = 400 is applied in one single step.

TABLE 7 Convergence study for the cross-ply hyperbolic shells under two pairs of pulling and pinching forces F = 400
using three SaS inside each layer and the displacement-based criterion with 𝜀 = 10−4

[90/0/90] [0/90/0]
GeX9P4 GeX9P4

Mesh 4 × 4 8 × 8 16 × 16 32 × 32 48 × 48 4 × 4 8 × 8 16 × 16 32 × 32 48 × 48
32 × 32 32 × 32

−ux (A) 2.609 3.159 3.483 3.525 3.536 3.523 3.120 4.773 5.644 6.157 6.198 6.133
ux (C) 2.257 2.438 2.527 2.520 2.519 2.519 2.538 2.916 2.896 2.681 2.659 2.692
NStep 1 2 1 1 1 1 1 2 2 5 6 5
NIter 9 15 8 7 7 7 10 15 19 26 26 26

TABLE 8 Euclidean norm of displacement and residual vectors during equilibrium
iterations for the [90/0/90] hyperbolic shell using 32 × 32 mesh when the total load
F = 400 is applied in one single step||U[n+1] − U[n]|| || r[n]||

Iteration I1 = I2 = I3 = 3 I1 = I2 = I3 = 4 I1 = I2 = I3 = 3 I1 = I2 = I3 = 4

0 5.18E+02 6.19E+02 1.00E+02 1.00E+02
1 2.57E+02 3.07E+02 2.42E+07 2.43E+07
2 1.15E+02 1.37E+02 4.34E+06 4.36E+06
3 4.10E+01 4.90E+01 8.20E+05 8.24E+05
4 1.08E+01 1.30E+01 2.01E+05 2.03E+05
5 2.48E+00 2.96E+00 3.96E+04 4.07E+04
6 9.92E−02 1.19E−01 1.91E+03 2.46E+03
7 3.63E−04 4.54E−04 1.58E+01 5.69E+01
8 9.69E−09 7.37E−07 1.02E−03 1.32E+00
9 6.29E−10 1.49E−09 8.52E−08 1.65E−05
10 6.29E−10 1.41E−09 8.55E−08 1.46E−06

FIGURE 17 Transverse displacements of the middle surface at points A, B, C, and D of the cross-ply cylindrical shells vs force F: GeXSaS4
element using three SaS inside each layer and 32 × 32 mesh (○) and five-parameter shell element of Basar et al.62 (□)
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FIGURE 18 Through-thickness distribution of the second Piola-Kirchhoff stress for the cross-ply [90/0/90] hyperbolic shell under force
F = 400 at point E(L/2, 𝜋/4) for a different number of SaS inside each layer In (n = 1, 2, and 3) using 32 × 32 mesh [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 19 Through-thickness distribution of the second Piola-Kirchhoff stress for the cross-ply [0/90/0] hyperbolic shell under force
F = 400 at point E(L/2, 𝜋/4) for a different number of SaS inside each layer In (n = 1,2 and 3) using 32 × 32 mesh [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Figure 17 shows load-displacement curves related to points A, B, C, and D for both hyperbolic shells using three SaS
inside the layers and 32 × 32 mesh compared to the results in the work of Basar et al.62 Figures 18 and 19 display the
through-thickness distribution of the second Piola-Kirchhoff stress at point E(L/2,𝜋/4) taking three and four SaS for each
layer. As can be seen, the GeXSaS4 element performs well in the case of using more than three SaS. However, it cannot
be employed for the analysis of the transverse normal stress because the shell is very thin with the slenderness ratio
R/h = 375. There is no such a problem when we analyze thicker hyperbolic shells with R/h < 250.

9 CONCLUSIONS

This paper presents a finite rotation GeX hybrid-mixed four-node solid-shell element based on the SaS method in which
the displacements of SaS are utilized as fundamental shell unknowns. The SaS are located at Chebyshev polynomial
nodes inside the layers and interfaces as well. The tangent stiffness matrix is evaluated through 3D analytical integration
based on the extended ANS method with no expensive numerical matrix inversion and its explicit form is presented. The
developed GeXSaS4 solid-shell element passes 3D membrane and bending patch tests48 and zero energy mode tests50 and
exhibits a superior performance in all benchmarks considered.

The proposed GeX four-node SaS solid-shell element formulation is free of assumptions of small displacements, small
rotations and small loading steps. This formulation allows one to employ much larger load increments than possible with
existing displacement-based solid-shell elements. Due to this novelty and 3D analytical integration, the GeXSaS4 element
allows the use of very coarse meshes even for laminated composite shells undergoing arbitrarily large displacements
and rotations. It can be recommended for the analysis of the second Piola-Kirchhoff stress in nonlinear thick and thin
composite shells.

The GeXSaS4 solid-shell element can be extended to the analysis of finite rotation functionally graded shell structures
following contributions.17,20,49,50
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APPENDIX A

The nodal vectors 𝚵(n)in
ijr introduced in Section 6 to define the strain parameters and displacement derivatives of SaS at

element nodes (48) can be written in a closed form. The use of Equations (17), (22), (42), (43), and (47) leads to the
following expressions for nonzero components of these vectors:

(
𝚵(n)in
𝛼𝛽𝑟

)
𝛼+3𝜇n+3NSaS(s−1)

= d𝛽rs,
(
𝚵(n)in
𝛼𝛼𝑟

)
3+3𝜇n+3NSaS(s−1)

= 𝛿rsk𝛼𝑠,(
𝚵(n)in
𝛼𝛼𝑟

)
𝛽+3𝜇n+3NSaS(s−1)

= 𝛿rsB𝛼𝑠,
(
𝚵(n)in
𝛼𝛽𝑟

)
𝛽+3𝜇n+3NSaS(s−1)

= −𝛿rsB𝛽𝑠 for 𝛽 ≠ 𝛼,(
𝚵(n)in

3𝛼𝑟

)
3+3𝜇n+3NSaS(s−1)

= d𝛼rs,
(
𝚵(n)in

3𝛼𝑟

)
𝛼+3𝜇n+3NSaS(s−1)

= −𝛿rsk𝛼𝑠,(
𝚵(n)in

i3r

)
i+3𝜈n+3NSaS(s−1)

= 𝛿rsM(n)𝑗n

(
𝜃
(n)in
3

)
,

(A1)
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where
d𝛼rs =

1
4𝓁𝛼A𝛼𝑟

n𝛼𝑠

(
1 + n𝛽𝑟n𝛽𝑠

)
for 𝛽 ≠ 𝛼,

𝜇n = in +
n−1∑
𝜏=1

I𝜏 − n, 𝜈n = 𝑗n +
n−1∑
𝜏=1

I𝜏 − n,
(A2)

where A𝛼r, k𝛼r, and B𝛼r are the nodal values of geometric parameters of the middle surface; 𝛿rs is the Kronecker delta.
The coefficients n𝛼r are defined by (43) and, as we remember, the indices n = 1, 2,… , N; in, jn = 1, 2, … , In; r, s = 1, 2, 3, 4;
i = 1, 2, 3 and 𝛼, 𝛽 = 1, 2. The remaining components of vectors 𝚵(n)in

ijr not written out explicitly are zero.

APPENDIX B

Here, we formulate two propositions used in Sections 6 and 7.

Proposition 2. The determinant of the matrix 𝚲(n) =
[
Λ(n)in𝑗n

]
related to the nth layer is not equal to zero.

Proof. Introduce any vector v(n) =
[
v1 v2 · · · vIn

]T and consider a quadratic form(
v(n))T𝚲(n)v(n) =

∑
in

∑
𝑗n

Λ(n)in𝑗n v(n)in
v(n)
𝑗n

=
∑

in

∑
𝑗n

v(n)in
v(n)
𝑗n

𝜃
[n]
3

∫
𝜃
[n−1]
3

L(n)in L(n)𝑗n c1c2d𝜃3 =

𝜃
[n]
3

∫
𝜃
[n−1]
3

(
g(n)

)2c1c2d𝜃3,

(B1)

where
g(n) (𝜃3) =

∑
in

v(n)in
L(n)in . (B2)

Because of c𝛼 > 0, the quadratic form (v(n))T𝚲(n)v(n) is positive definite and, therefore, det(𝚲(n)) > 0.

Proposition 3. For any vector w = [w1 w2 w3 w4 w5 w6]T, the identity(
A(n)in

r1r2
(q)

)T
w = H(n)in

r1r2
(w)q for r1 + r2 < 2 (B3)

holds, where H(n)in
r1r2

(w) are the symmetric matrices of order 12NSaS × 12NSaS defined as

H(n)in
r1r2

(w) = w1𝚷(n)in
11r1r2

+ w2𝚷(n)in
22r1r2

+ w3𝚷(n)in
33r1r2

+ w4𝚷(n)in
12r1r2

+ w5𝚷(n)in
13r1r2

+ w6𝚷(n)in
23r1r2

. (B4)

Proof. The symmetry of matrices H(n)in
r1r2

(w) follows from the symmetry of matrices 𝚷(n)in
ijr1r2

given by Equations (51) and
(57). Owing to this property and Equation (56), we have(

A(n)in
r1r2

(q)
)T

w =
[
𝚷(n)in

11r1r2
q 𝚷(n)in

22r1r2
q 𝚷(n)in

33r1r2
q 𝚷(n)in

12r1r2
q 𝚷(n)in

13r1r2
q 𝚷(n)in

23r1r2
q
]

w = H(n)in
r1r2

(w)q (B5)

that completes the proof.
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