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Benchmark solutions for the free
vibration of layered piezoelectric plates
based on a variational formulation

Gennady M Kulikov and Svetlana V Plotnikova

Abstract
This article focuses on the implementation of the sampling surfaces method for the three-dimensional vibration analysis
of layered piezoelectric plates. The sampling surfaces method is based on choosing inside the layers not equally spaced
sampling surfaces parallel to the middle surface in order to introduce the displacements and electric potentials of these
surfaces as basic plate variables. Such choice of unknowns with the consequent use of Lagrange polynomials in the
assumed distributions of displacements, strains, electric potential, and electric field vector through the thicknesses of
layers leads to the robust piezoelectric plate formulation. The sampling surfaces are located inside each layer at
Chebyshev polynomial nodes that makes it possible to minimize uniformly the error due to the Lagrange interpolation.
Therefore, the sampling surfaces formulation can be applied efficiently to the obtaining of benchmark solutions for the
free vibration of layered piezoelectric plates, which asymptotically approach the three-dimensional solutions of piezo-
electricity as the number of sampling surfaces tends to infinity.
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Introduction

Three-dimensional (3D) vibration analysis of layered
piezoelectric plates has received considerable attention
during past 20 years. There are at least four approaches
to 3D exact solutions of electroelasticity for layered
piezoelectric plates, namely, the Pagano approach
(Pagano, 1970), the state space approach (Brogan,
1985), the power series expansion approach, that is, the
Frobenius method (Frobenius, 1873), and the asympto-
tic expansion approach, that is, the perturbation method
(Gol’denveizer, 1961). These approaches are discussed
in survey articles (Wu et al., 2008; Wu and Liu, 2016).
The Pagano approach was implemented for the freely
vibrating simply supported piezoelectric plates (Heyliger
and Brooks, 1995; Heyliger and Saravanos, 1995) and
extended then to the transient response of piezoelectric
and magnetostrictive plates subjected to nonuniform
heating (Ootao and Tanigawa, 2000, 2005). The most
popular state space approach was extensively utilized
for solving the dynamic problems of simply supported
electroelastic plates by Chen et al. (1998), Ding et al.
(1999), Chen and Ding (2002), Deü and Benjeddou
(2005), and Zhong and Yu (2006) and magneto-electro-
elastic plates by Pan and Heyliger (2002), Chen et al.
(2005), and Chen et al. (2007a, 2007b). Messina and

Carrera (2015) proposed to utilize the transfer matrix
method to solve the ordinary differential equations in
terms of the displacements and electric potential derived
from the system of partial differential equations through
the separating variable procedure. The dynamic
response of laminated piezoelectric plates through
Taylor series expansions in the thickness direction was
studied by Gao et al. (1998), Vel et al. (2004), and
Baillargeon and Vel (2005). The asymptotic approach
was also implemented effectively for stress and vibration
analyses of piezoelectric and magnetostrictive plates and
shells (Cheng and Batra, 2000; Cheng et al., 2000;
Kalamkarov and Kolpakov, 2001; Reddy and Cheng,
2001; Tsai and Wu, 2008; Vetyukov et al., 2011).
However, the discussed approaches are not easy to
implement for the 3D dynamic analysis of layered piezo-
electric plates with general boundary conditions.
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In the literature, there is a powerful tool to overcome
the above-mentioned difficulties. This is a sampling sur-
faces (SaS) method developed recently by the authors
and the SaS-based variational formulation. The SaS
method was utilized first for the 3D stress and vibration
analyses of elastic composite plates and shells (Kulikov
and Plotnikova, 2011; Kulikov et al., 2016). According
to this method, one chooses the arbitrarily located sur-
faces inside the nth layer O(n)1, O(n)2, . . . , O(n)In parallel
to the middle surface in order to introduce the displace-
ment vectors u(n)1, u(n)2, . . . , u(n)In and electric poten-
tials u(n)1, u(n)2, . . . , u(n)In of these surfaces as basic
plate unknowns, where In is the number of SaS of the
nth layer (In � 3). Such choice of unknowns with the
consequent use of the Lagrange polynomials of degree
In � 1 in assumed through-thickness distributions of the
displacements, strains, electric potential, and electric
field vector of the nth layer leads to a robust piezoelec-
tric plate formulation. Note that the SaS formulation
has been implemented only for the 3D stress analysis of
layered and functionally graded piezoelectric plates and
shells (Kulikov et al., 2015; Kulikov and Plotnikova,
2013a, 2013b, 2013c, 2014, 2015, 2017). This article is
intended to extend the SaS formulation to the vibration
analysis of piezoelectric plates and present the bench-
mark solutions for the free vibration of layered piezo-
electric plates.

It should be noted that the SaS plate formulation
with equally spaced SaS does not work properly with
the Lagrange polynomials of high degree because of
Runge’s phenomenon. This phenomenon yields the
wild oscillation at the edges of the interval when the
user deals with some specific functions (Burden and
Faires, 2010). If the number of equispaced nodes
increased, then the oscillations become even larger.
However, the use of the Chebyshev polynomial nodes
inside the plate body (Kulikov et al., 2016; Kulikov and
Plotnikova, 2013a, 2013c, 2015) can help to improve
significantly the behavior of the Lagrange polynomials
of high degree because such a choice makes it possible
to minimize uniformly the error due to the Lagrange
interpolation. This fact gives an opportunity to obtain
the displacements and stresses with a prescribed accu-
racy employing the sufficiently large number of SaS. It
means in turn, the solutions based on the SaS concept
asymptotically approach the 3D exact solutions of elas-
ticity as the number of SaS In ! ‘.

The origins of the SaS concept can be found in con-
tributions (Kulikov, 2001; Kulikov and Carrera, 2008)
in which three, four, and five equally spaced SaS are
employed. The SaS formulation with the arbitrary
number of equispaced SaS is considered by Kulikov
and Plotnikova (2011). The more general approach
with the SaS located at Chebyshev polynomial nodes
was developed later (Kulikov et al., 2015; Kulikov and
Plotnikova, 2013b, 2014). Also note that the term
SaS should not be confused with such terms as

mathematical or virtual surfaces extensively utilized in
Carrera’s unified formulation (CUF; Carrera, 2002,
2003), which was implemented for the 3D vibration
analysis of laminated piezoelectric plates and shells
(Carrera et al., 2010, 2011; D’Ottavio et al., 2006). This
is due to the fact that in a CUF, the generalized displa-
cements of layers having no mechanical sense are used.
On the contrary, in a SaS plate formulation, all basic
variables including the strains and electric field compo-
nents are related to SaS of layers.

Kinematic description of layered plate

Consider a layered plate of thickness h. Let the middle
surface O be described by Cartesian coordinates x1 and
x2. The coordinate x3 is oriented in the thickness direc-
tion. According to the SaS concept, we choose inside
each layer In SaS O(n)1, O(n)2, . . . , O(n)In parallel to the
middle surface. The transverse coordinates of SaS of
the nth layer are given by

x
(n)1
3 = x

½n�1�
3 , x

(n)In

3 = x
½n�
3 ð1Þ

x
(n)mn

3 =
1

2
x
½n�1�
3 + x

½n�
3

� �
� 1

2
hn cos p

2mn � 3

2(In � 2)

� �
ð2Þ

where x
½n�1�
3 and x

½n�
3 are the transverse coordinates of

interfaces O½n�1� and O½n� depicted in Figure 1;
hn = x

½n�
3 � x

½n�1�
3 is the thickness of the nth layer; the

index n identifies the belonging of any quantity to the
nth layer and runs from 1 to N, where N is the number
of layers; the index mn identifies the belonging of any
quantity to inner SaS of the nth layer and runs from 2 to
In � 1; the indices in, jn, and kn to be introduced later for
describing all SaS of the nth layer running from 1 to In.

It is important that the transverse coordinates of
inner SaS (2) coincide with the coordinates of
Chebyshev polynomial nodes (Burden and Faires,
2010). This fact has a great meaning for a conver-
gence of the SaS method (Kulikov and Plotnikova,
2013b, 2014).

The strains of the nth layer e(n)ij are given by

Figure 1. Geometry of the laminated plate.
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2e(n)ab = u
(n)
a,b + u

(n)
b,a

2e(n)a3 =b(n)
a + u

(n)
3,a, e(n)33 =b

(n)
3

ð3Þ

where u
(n)
i are the displacements of the nth layer; b

(n)
i

are the derivatives of displacements with respect to the
thickness coordinate

b
(n)
i = u

(n)
i, 3 ð4Þ

Here and throughout this article, Latin indices
i, j, k, l range from 1 to 3, whereas Greek indices
a, b range from 1 to 2; the symbol ( . . . ), i stands for
the partial derivatives with respect to coordinate xi.

Introduce displacements of SaS of the nth layer
u
(n)in
i (x1, x2) as basic plate unknowns as follows

u
(n)in
i = u

(n)
i (x

(n)in
3 ) ð5Þ

Due to boundary conditions at outer surfaces and
continuity conditions at interfaces, we have

u
(1)1
i = u

½0�
i , u

(N)IN

i = u
½N �
i ð6Þ

u
(m)Im

i = u
(m+ 1)1
i = u

½m�
i ð7Þ

where u
½0�
i (x1, x2) and u

½N �
i (x1, x2) are the displacements

of bottom and top surfaces; u
½m�
i (x1, x2) are the displace-

ments of interfaces; the index m stands for the number
of interfaces and runs from 1 to N � 1.

Next, we introduce strains of SaS of the nth layer
e(n)inij (x1, x2) as

e(n)inij = e(n)ij (x
(n)in
3 ) ð8Þ

Using equations (3) to (5) and (8) leads to relations
between the SaS variables

2e(n)inab = u
(n)in
a,b + u

(n)in
b,a

2e(n)ina3 =b(n)in
a + u

(n)in
3,a , e(n)in33 =b

(n)in
3

ð9Þ

where b
(n)in
i (x1, x2) are the values of derivatives of dis-

placements with respect to the thickness coordinate at
SaS of the nth layer

b
(n)in
i =b

(n)
i (x

(n)in
3 ) ð10Þ

Up to this moment, no assumptions concerning the
displacement field have been made. We start now with
the first assumption of the proposed higher-order layer-
wise plate formulation. Let us assume that the displace-
ments are distributed through the thickness in the
following form

u
(n)
i =

X
in

L(n)in u
(n)in
i , x

½n�1�
3 � x3� x

½n�
3 ð11Þ

where L(n)in(x3) are the Lagrange polynomials of degree
In � 1 defined as

L(n)in =
Y
jn 6¼in

x3 � x
(n) jn
3

x
(n)in
3 � x

(n) jn
3

ð12Þ

Substituting SaS approximation (11) in (4) results in

b
(n)
i =

X
in

M (n)in u
(n)in
i ð13Þ

where M (n)in =L
(n)in
, 3 are the polynomials of degree In � 2.

Taking into consideration the identity

M (n)in =
X

jn

M (n)in(x
(n) jn
3 )L(n) jn ð14Þ

which follows directly from the fundamental property
of the Lagrange polynomials L(n) jn , one obtains

b
(n)
i =

X
in

L(n)in b
(n)in
i ð15Þ

where

b
(n)in
i =

X
jn

M (n) jn(x
(n)in
3 )u

(n) jn
i ð16Þ

The derivatives of the Lagrange polynomials at SaS
M (n) jn (x(n)in3 ) are evaluated in accordance with (Kulikov
et al., 2016; Kulikov and Plotnikova, 2013a).

It is seen from equation (16) that the key functions
b
(n)in
i of the SaS layered plate formulation are repre-

sented as a linear combination of displacements of SaS
of the nth layer u

(n) jn
i .

Proposition 1. The functions b
(n)1
i , b

(n)2
i , . . . , b

(n)In

i are
linearly dependent, that is, there exist numbers
a(n)1, a(n)2, . . . , a(n)In , which are not all zero such that

X
in

a(n)in b
(n)in
i =0 ð17Þ

The proof of this statement can be found in Kulikov
and Plotnikova (2016).

Substituting the displacement approximations (11)
and (15) into strain-displacement relations (3) and using
(9), we arrive at the distribution of strains through the
thickness of the nth layer

e(n)ij =
X

in

L(n)ine(n)inij , x
½n�1�
3 � x3� x

½n�
3 ð18Þ

As can be seen, the through-thickness strain distribu-
tion (18) is similar to the displacement distribution (11).
This is important because the strains of the nth layer
explicitly depend on the SaS strains of the same layer.

Description of electric field

The relation between the electric field E
(n)
i and the elec-

tric potential u(n) of the nth layer is given by
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E(n)
a = � u(n)

,a , E
(n)
3 = � c(n) ð19Þ

where

c(n) =u(n)
, 3 ð20Þ

Introduce electric potentials of SaS of the nth layer
u(n)in(x1, x2) as a second set of basic plate unknowns by

u(n)in =u(n)(x
(n)in
3 ) ð21Þ

Due to boundary conditions at outer surfaces and
continuity conditions at interfaces, we have

u(1)1 =u½0�, u(N )IN =u½N � ð22Þ

u(m)Im =u(m+ 1)1 =u½m� ð23Þ

where u½0�(x1, x2) and u½N �(x1, x2) are the electric poten-
tials of bottom and top surfaces; u½m�(x1, x2) are the
electric potentials of interfaces.

Introduce then the electric field components at SaS
of the nth layer E

(n)in
i as

E
(n)in
i =E

(n)
i (x

(n)in
3 ) ð24Þ

Using equations (19) to (21) and (24) leads to rela-
tions between the SaS variables

E(n)in
a = � u(n)in

,a , E
(n)in
3 = � c(n)in ð25Þ

where c(n)in (x1, x2) are the values of the derivative of the
electric potential of the nth layer with respect to coordi-
nate x3 at SaS

c(n)in =c(n)(x
(n)in
3 ) ð26Þ

Now, we accept the second assumption of the SaS
layered piezoelectric plate formulation. Assume that the
electric potential is distributed through the thickness of
the nth layer according to the SaS concept as

u(n) =
X

in

L(n)inu(n)in , x
½n�1�
3 � x3� x

½n�
3 ð27Þ

Substituting SaS approximation (27) in (20) yields

c(n) =
X

in

M (n)inu(n)in ð28Þ

Using again the identity (14), one obtains

c(n) =
X

in

L(n)in c(n)in ð29Þ

where

c(n)in =
X

jn

M (n) jn (x
(n)in
3 )u(n) jn ð30Þ

that is similar to equation (16). This means that the key
functions c(n)in of the SaS layered piezoelectric plate for-
mulation are represented as a linear combination of elec-
tric potentials of SaS of the nth layer u(n) jn .

Proposition 2. The functions c(n)1, c(n)2, . . . , c(n)In are
linearly dependent, that is, there exist numbers
g(n)1, g(n)2, . . . , g(n)In , which are not all zero such that

X
in

g(n)in c(n)in =0 ð31Þ

This statement could be proved by using the technique
developed by Kulikov and Plotnikova (2016).

Substituting the through-thickness approximations
(27) and (29) in relations (19) and using (25), we arrive
at the distribution of the electric field through the thick-
ness of the nth layer

E
(n)
i =

X
in

L(n)in E
(n)in
i , x

½n�1�
3 � x3� x

½n�
3 ð32Þ

Variational formulation of piezoelectric
plate problem

In the case of free vibrations of the layered piezoelectric
plate when no external loads are applied, the extended
Hamilton’s principle (Tiersten, 1969) is written as

d

ðt2
t1

(T �P)dt= 0 ð33Þ

where t1 and t2 are two specified times; T is the kinetic
energy; P is the electromechanical energy given by

T =
1

2

ðð
O

X
n

ðx½n�3

x
½n�1�
3

r(n) _u(n)
i _u(n)

i dx1dx2dx3 ð34Þ

P=
1

2

ðð
O

X
n

ðx½n�3

x
½n�1�
3

(s
(n)
ij e(n)ij � D

(n)
i E

(n)
i )dx1dx2dx3 ð35Þ

where s
(n)
ij are the components of the stress tensor of

the nth layer; D
(n)
i are the components of the electric

displacement vector of the nth layer; r(n) is the mass
density of the nth layer; _u(n)

i is the derivative of displa-
cements with respect to time t. Here and in the follow-
ing developments, the summation on repeated Latin
indices is implied.

Substituting strain and electric field distributions
(18) and (32) in (35) and introducing stress resultants
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H
(n)in
ij =

ðx½n�3

x
½n�1�
3

s
(n)
ij L(n)in dx3 ð36Þ

and electric displacement resultants

T
(n)in
i =

ðx½n�3

x
½n�1�
3

D
(n)
i L(n)in dx3 ð37Þ

one obtains

P=
1

2

ðð
O

X
n

X
in

H
(n)in
ij e(n)inij � T

(n)in
i E

(n)in
i

� �
dx1dx2 ð38Þ

For simplicity, we consider the case of linear piezo-
electric materials. Therefore, the constitutive equations
are written as follows

s
(n)
ij =C

(n)
ijkl e

(n)
kl � e

(n)
kij E

(n)
k , x

½n�1�
3 � x3� x

½n�
3 ð39Þ

D
(n)
i = e

(n)
ikl e(n)kl + 2 nð Þ

ik E
(n)
k , x

½n�1�
3 � x3� x

½n�
3 ð40Þ

where C
(n)
ijkl, e

(n)
kij , and 2

nð Þ
ijk are the elastic, piezoelectric,

and dielectric constants of the nth layer.
Inserting constitutive equations (39) and (40)

correspondingly in (36) and (37) and using again
through-thickness distributions (18) and (32), we
have

H
(n)in
ij =

X
jn

L(n)injn C
(n)
ijkl e

(n) jn
kl � e

(n)
kij E

(n) jn
k

� �
ð41Þ

T
(n)in
i =

X
jn

L(n)injn e
(n)
ikl e(n) jn

kl + 2 nð Þ
ik E

(n) jn
k

� �
ð42Þ

where L(n)injn are the weighted coefficients defined as

L(n)injn =

ðx½n�3

x
½n�1�
3

L(n)in L(n) jn dx3 ð43Þ

Substituting equations (11) and (41), (42) corre-
spondingly in (34) and (38), the following expressions
for the kinetic energy and strain energy are obtained

T =
1

2

ðð
O

X
n

X
in

X
jn

L(n)injn _u(n)in
i r(n) _u(n)jn

i dx1dx2 ð44Þ

P=
1

2

ðð
O

X
n

X
in

X
jn

L(n)injn e(n)inij C
(n)
ijkl e

(n) jn
kl

�

�2e(n)inij e
(n)
kij E

(n) jn
k � E

(n)in
i 2 nð Þ

ik E
(n) jn
k

�
dx1dx2

ð45Þ

Analytical solution for layered
piezoelectric rectangular plate

In this section, we study the free vibration of the layered
piezoelectric rectangular plate with simply supported
edges. The boundary conditions for the simply sup-
ported plate with electrically grounded edges are writ-
ten as

s
(n)
11 = u

(n)
2 = u

(n)
3 =u(n) = 0 at x1 = 0 and x1 = a

s
(n)
22 = u

(n)
1 = u

(n)
3 =u(n) = 0 at x2 = 0 and x2 = b

ð46Þ

where a and b are the length and width of the plate.
To satisfy boundary conditions (46), we seek the

analytical solution of the problem in the following form

u
(n)in
1 = u

(n)in
1rs eivrst cos

rpx1

a
sin

spx2

b

u
(n)in
2 = u

(n)in
2rs eivrst sin

rpx1

a
cos

spx2

b

u
(n)in
3 = u

(n)in
3rs eivrst sin

rpx1

a
sin

spx2

b

u(n)in =u(n)in
rs eivrst sin

rpx1

a
sin

spx2

b

ð47Þ

where r and s are the half-wave numbers in x1 and x2
directions; u

(n)in
irs and u(n)in

rs are the amplitudes of the dis-
placements and electric potentials of SaS; vrs is the fre-
quency in radians per second; and i=

ffiffiffiffiffiffiffi
�1
p

is the
imaginary unit.

Substituting equation (47) in equations (9), (16),
(25), (30), (44), and (45) and using Hamilton’s principle
(33), we arrive at the homogeneous system of linear
equations of order 4NSaS

∂(T �P)

∂Wrs

= 0,
∂(T �P)

∂Frs

= 0 ð48Þ

where Wrs and Frs are the unknown column vectors of
order 3NSaS and NSaS given by

Wrs = WT
1rs W

T
2rs W

T
3rs

� �T
Wirs = u

½0�
irs u

(1)2
irs . . . u

1ð ÞI1�1
irs u

½1�
irs u

(2)2
irs . . . u

N�1ð ÞIN�1�1
irs

h

u
N�1½ �

irs u
Nð Þ2

irs . . . u
Nð ÞIN�1

irs u
½N �
irs

iT
ð49Þ

Frs = u½0�rs u(1)2
rs . . . u 1ð ÞI1�1

rs u½1�rs u(2)2
rs . . . u N�1ð ÞIN�1�1

rs

h

u N�1½ �
rs u Nð Þ2

rs . . . u Nð ÞIN�1
rs u½N �rs

iT
ð50Þ

where NSaS=
P

n

In � N + 1 is the total number of SaS.

The homogeneous system (48) can be expressed as
(no summation is needed)
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Kuu
rs Kuu

rs

Kuu
rs Kuu

rs

	 

� v2

rs

Mrs 0

0 0

	 
� �
Wrs

Frs

	 

= 0 ð51Þ

where Kuu
rs , K

uu
rs , K

uu
rs =(Kuu

rs )
T, Kuu

rs , and Mrs are the
stiffness and inertial matrices. Eliminating Frs from the
second row of (51), one finds

Frs = � (Kuu
rs )�1Kuu

rs Wrs ð52Þ

Inserting then equation (52) in the second row of (51),
the following reduced homogeneous system is obtained

(Krs � v2
rsMrs)Wrs = 0 ð53Þ

Krs =Kuu
rs � Kuu

rs (K
uu
rs )�1Kuu

rs ð54Þ

which has a non-trivial solution only if

det (Krs � v2
rsMrs)= 0 ð55Þ

where Krs is the stiffness matrix of order 3NSaS 3 3NSaS.
The polynomial equation (55) has to be solved to

obtain the circular frequencies 0\v(1)
rs \ v(2)

rs \ � � �
\ v(3NSaS)

rs arranged in an increasing order. The eigen-
vectors W(q)

rs associated with the corresponding eigenva-
lues l(q)

rs =(v(q)
rs )

2 can be evaluated using (53), where
the superscript q= 1, 2, . . . , 3NSaS stands for the num-
ber of through-thickness modes.

The described algorithm was performed with the
Symbolic Math Toolbox, which incorporates symbolic
computations into the numeric environment of
MATLAB. This makes it possible to obtain the analyti-
cal solutions for layered piezoelectric rectangular plates
in the framework of the SaS formulation, which asymp-
totically approach the 3D exact solutions of electroelas-
ticity as the number of SaS goes to infinity.

Numerical examples

Here, we study simply supported homogeneous and
layered piezoelectric rectangular plates with different
electric boundary conditions, namely, the open-circuit
surface conditions [OC/OC]

s
(1)
13 =s

(1)
23 =s

(1)
33 =D

(1)
3 = 0 at x3 = � h=2

s
(N )
13 =s

(N )
23 =s

(N )
33 =D

(N )
3 = 0 at x3 = h=2

ð56Þ

the closed-circuit surface conditions [CC/CC]

s
(1)
13 =s

(1)
23 =s

(1)
33 =u(1) = 0 at x3 = � h=2

s
(N )
13 =s

(N )
23 =s

(N )
33 =u(N ) = 0 at x3 = h=2

ð57Þ

and their combination on the bottom and top surfaces
[OC/CC]

s
(1)
13 =s

(1)
23 =s

(1)
33 =D

(1)
3 = 0 at x3 = � h=2

s
(N )
13 =s

(N )
23 =s

(N )
33 =u(N ) = 0 at x3 = h=2

ð58Þ

Single-layer piezoelectric square plate

Consider first a piezoelectric square plate composed of
PZT-4 polarized in the thickness direction. The mate-
rial properties of the piezoceramic are given in Table 1.
To compare the results derived with the results of
Heyliger and Saravanos (1995), we accept r= 1 kg=m3

and introduce the scaled frequencies �v(q)
rs =v(q)

rs =100 .
Additionally, we introduce the dimensionless variables
at crucial points as functions of the thickness
coordinate

�u1 = u1(0, b=2s, z)a=hu�3
�u3 = u3(a=2r, b=2s, z)=u�3

�s11 =s11(a=2r, b=2s, z)a2=E0hu�3

�s22 =s22(a=2r, b=2s, z)a2=E0hu�3

�s12 =s12(0, 0, z)a2=E0hu�3

�s13 =s13(0, b=2s, z)a3=E0h
2u�3

�s23 =s23(a=2r, 0, z)a3=E0h2u�3

�s33 =s33(a=2r, b=2s, z)a4=E0h
3u�3

�u= 10u(a=2r, b=2s, z)d0a2=h2u�3
�D3 =D3(a=2r, b=2s, z)a4=d0E0h

3u�3

ð59Þ

where z= x3=h is the dimensionless thickness coordi-
nate; u�3 = u3(a=2r, b=2s, 0) is the maximum transverse
displacement of the middle surface; E0 = 81:3 3 109 Pa
and d0 = 289:1 3 10�12 m=V are the representative
moduli and h= 0:01m.

Tables 2 to 5 list the results of the convergence study
for boundary conditions (56) and (57) due to the
increasing number of SaS located at Chebyshev poly-
nomial nodes, that is, the bottom and top surfaces are

Table 1. Material properties.

Material PZT-4 Graphite-epoxy

E1 (GPa) 81.3 172.5
E2 (GPa) 81.3 6.9
E3 (GPa) 64.5 6.9
G12 (GPa) 30.6 3.45
G13 (GPa) 25.6 3.45
G23 (GPa) 25.6 1.38
n12 0.329 0.25
n13 0.432 0.25
n23 0.432 0.35
e311 (C/m2) 25.2 0.0
e322 (C/m2) 25.2 0.0
e333 (C/m2) 15.08 0.0
e113 (C/m2) 12.72 0.0
e223 (C/m2) 12.72 0.0
211=20 1475 3.5
222=20 1475 3.0
233=20 1300 3.0
r (kg/m3) 7600 1800

Vacuum permittivity 20 = 8:854 pF/m.
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Figure 2. Through-thickness distributions of displacements, electric potential, electric displacement, and stresses for a single-layer
piezoelectric square plate with [OC/OC] boundary conditions for I1 = 9 and half-wave numbers r= s= 1 and q= 1.

Kulikov and Plotnikova 2695



not included into a set of SaS. This is important because
using only Chebyshev polynomial nodes makes it possi-
ble to minimize uniformly the error due to the
Lagrange interpolation. A comparison with the 3D
analytical solutions (Heyliger and Saravanos, 1995;
Messina and Carrera, 2015) is presented. As it turned
out, the proposed SaS formulation provides from 12 to
14 right digits for the first six natural frequencies corre-
sponding to half-wave numbers r = s= 1 (see, e.g.
Table 2) utilizing 17 SaS inside the plate body.
However, the increase of SaS to 19 gives a bit worse
results and the choice of a more number of SaS lead to

Figure 3. Through-thickness distributions of displacements, electric potential, and electric displacement for a single-layer
piezoelectric square plate with [CC/CC] boundary conditions for I1 = 9 and half-wave numbers r= s= 1 and q= 1.

Table 5. Results of the convergence study for a single-layer piezoelectric square plate with [CC/CC] boundary conditions for
a=h= 4 and r= s= q= 1.

I1 �u1(0:5) �u3(0:5) �s11(0:5) �s12(0:5) �s13(0) �s33(0:25) �u(0) �D3(0:25)

3 21.14529544630 0.946968905246 7.08611299681 22.70849652805 5.42322466931 0.35979565794 6.68022113485 6.05290948360

5 21.16130608839 0.952655762986 7.17054583018 22.74635991837 6.90172154199 2.59240554545 6.53667293828 8.65812306704

7 21.16128891589 0.952640936927 7.17011730656 22.74631930731 6.88424367757 2.58309798066 6.53696260997 8.64337058079

9 21.16128894667 0.952640962239 7.17011600170 22.74631938010 6.88430586505 2.58308403650 6.53696229826 8.64335483205

11 21.16128894666 0.952640962142 7.17011597765 22.74631938006 6.88430575367 2.58308408543 6.53696227254 8.64335485884

13 21.16128894667 0.952640962125 7.17011591754 22.74631938007 6.88430575172 2.58308409063 6.53696226177 8.64335517613

15 21.16128894665 0.952640962310 7.17011601139 22.74631938004 6.88430576434 2.58308408875 6.53696232983 8.64335535852

17 21.16128894661 0.952640962170 7.17011601538 22.74631937996 6.88430575598 2.58308408107 6.53696228496 8.64335487682

Table 6. Natural frequencies �v(1)
rs of a single-layer piezoelectric

square plate with different electric boundary conditions and half-
wave numbers for I1 = 9.

Frequency a=h= 2 a=h= 4 a=h= 10 a=h= 100

�v(1)
11, [OC/OC] 293801. 98228.0 18077.2 186.911

�v(1)
11, [CC/CC] 288227. 96926.7 18012.9 186.903

�v(1)
12, [OC/OC] 543827. 207264. 43183.7 467.019

�v(1)
12, [CC/CC] 534352. 203517. 42859.9 466.972

�v(1)
22, [OC/OC] 724558. 293801. 66347.3 746.851

�v(1)
22, [CC/CC] 713023. 288227. 65662.3 746.731
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Figure 4. Through-thickness distributions of displacements, electric potential, electric displacement, and stresses for a single-layer
piezoelectric square plate with [OC/OC] boundary conditions for I1 = 9 and half-wave numbers r= 1, s= 2 and q= 1.
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Figure 5. Through-thickness distributions of displacements, electric potential, electric displacement, and stresses for a single-layer
piezoelectric square plate with [OC/OC] boundary conditions for I1 = 9 and half-wave numbers r= s= 2 and q= 1.
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the divergence of the symbolic computation algorithm
developed.

Figures 2 to 5 display the distributions of displace-
ments, electric potential, electric displacement, and
stresses through the thickness for different values of the
slenderness ratio a=h and different half-wave numbers
taking 9 SaS located at Chebyshev polynomial nodes.
These results demonstrate convincingly the high poten-
tial of the developed piezoelectric plate formulation
because the boundary conditions on bottom and top
surfaces for the transverse components of the stress ten-
sor and electric displacement vector are satisfied with a
high accuracy. Table 6 lists the natural frequencies of
the piezoceramic plate with different electric boundary
conditions, slenderness ratios, and half-wave numbers.
It is seen that the use of closed-circuit surface conditions
leads to slightly less frequencies for all values of the
slenderness ratio and half-wave numbers considered.

Hybrid four-layer square plate

Consider next a simply supported two-ply square plate
[0/90] made of the graphite epoxy composite and cov-
ered with PZT-4 piezoelectric layers at the bottom and
at the top. Therefore, we deal here with a hybrid four-
layer plate [PZT/0/90/PZT] with ply thicknesses [0.25h/
0.25h/0.25h/0.25h]. The material properties of the
graphite epoxy and PZT-4 are given in Table 1. To

evaluate the results effectively, we utilize the dimen-
sionless variables at crucial points (59) except for the
dimensionless frequency and electric displacement,
which are defined as

�v(q)
rs =v(q)

rs a2
ffiffiffiffiffiffiffiffiffiffiffiffi
r0=E0

p
=h

�D3 = 100D3(a=2r, b=2s, z)a2=d0E0hu�3
ð60Þ

where E0 = 81:3 3 109 Pa, d0 = 289:1 3 10�12 m=V,
and r0 = 7600 kg=m3 are the representative moduli and
a= b= 1m.

The data listed in Tables 7 to 9 show that the SaS
formulation allows the reproducing of the 3D exact
solution for layered piezoelectric plates with a high
accuracy by choosing a sufficiently large number of
SaS throughout the plate. Here, the bottom and top
surfaces and interfaces as well are included into a set of
SaS. Nevertheless, the accuracy of calculations is not
worse than for a single-layer plate considered in a pre-
vious section, where all SaS are located at Chebyshev
polynomial nodes. It is seen that the use of 25 SaS cor-
responding to the choice of 7 SaS inside each layer pro-
vides from 10 to 13 right digits for the first six natural
frequencies. However, to achieve the high accuracy for
electric displacements and stresses, which are evaluated
through the constitutive equations (39) and (40),
the more SaS should be taken. As can be seen from
Tables 10 to 12, the use of 29 SaS that corresponds to

Table 7. Results of the convergence study for a hybrid four-layer square plate with [OC/OC] boundary conditions and a=h= 4.

In �v(1)
11 �v(2)

11 �v(3)
11 �v(4)

11 �v(5)
11 �v(6)

11

3 3.66263720355491 13.7798630431600 15.3568827772785 18.6690676457869 22.4805173192812 23.5567170949674
5 3.66169039500578 13.7791689442191 15.3523391788586 18.6678985666693 22.4792794125583 23.5509856633015
7 3.66169037401532 13.7791689147964 15.3523389097921 18.6678985480642 22.4792793724763 23.5509853105412
9 3.66169037415034 13.7791689147945 15.3523389097881 18.6678985480999 22.4792793724791 23.5509853105395

Table 8. Results of the convergence study for a hybrid four-layer square plate with [OC/CC] boundary conditions and a=h= 4.

In �v(1)
11 �v(2)

11 �v(3)
11 �v(4)

11 �v(5)
11 �v(6)

11

3 3.65938664457603 13.7797203996059 15.3568794705302 18.6681893520410 22.4459180580976 23.5031266932395
5 3.65844537088379 13.7790263574561 15.3523360017163 18.6670216390431 22.4446656157571 23.4975079666010
7 3.65844534978032 13.7790263280384 15.3523357326587 18.6670216204038 22.4446655754685 23.4975076244451
9 3.65844534977213 13.7790263280356 15.3523357326530 18.6670216204152 22.4446655754657 23.4975076244402

Table 9. Results of the convergence study for a hybrid four-layer square plate with [CC/CC] boundary conditions and a=h= 4.

In �v(1)
11 �v(2)

11 �v(3)
11 �v(4)

11 �v(5)
11 �v(6)

11

3 3.65618520016599 13.7795800290872 15.3568761100173 18.6672977302561 22.4140765604835 23.4472505782067
5 3.65524937852241 13.7788860428256 15.3523327729134 18.6661314012146 22.4128191567059 23.4417314749381
7 3.65524935727075 13.7788860134146 15.3523325038642 18.6661313825559 22.4128191167186 23.4417311425044
9 3.65524935730906 13.7788860134109 15.3523325038600 18.6661313825603 22.4128191167191 23.4417311425004
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Figure 6. Through-thickness distributions of displacements, electric potential, electric displacement, and stresses for a hybrid four-
layer square plate with [OC/OC] boundary conditions for I1 = I2 = I3 = I4 = 7 and half-wave numbers r= s= 1 and q= 1.
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the choice of 8 SaS inside each layer provides from 9 to
12 right digits for these variables at crucial points.

Figure 6 presents the through-thickness distributions
of displacements, electric potential, electric displace-
ment, and stresses in the case of [OC/OC] electric
boundary conditions for different slenderness ratios by
choosing seven SaS inside each layer. It is seen that the
boundary conditions on bottom and top surfaces and
the continuity conditions at interfaces for transverse

stress and electric displacement components are satisfied
correctly. Figures 7 and 8 show only distributions of the
electric potential and electric displacement through the
thickness of the plate for [OC/CC] and [CC/CC] bound-
ary conditions because the through-thickness distribu-
tions of displacements and stresses are very similar to
those depicted in Figure 6 and, therefore, they are not
displayed here. Table 13 lists additionally the funda-
mental frequencies of the hybrid four-layer plate with
different electric boundary conditions and various slen-
derness ratios. It is seen that the use of the closed-circuit
surface condition yields again slightly less frequencies
for all values of the slenderness ratio.

Conclusion

An efficient SaS formulation for the 3D free vibration
analysis of layered piezoelectric plates has been pro-
posed. It is based on a new concept of SaS located at

Figure 7. Through-thickness distributions of electric potential and electric displacement for a hybrid four-layer square plate with
[OC/CC] boundary conditions for I1 = I2 = I3 = I4 = 7 and half-wave numbers r= s= 1 and q= 1.

Figure 8. Through-thickness distributions of electric potential and electric displacement for a hybrid four-layer square plate with
[CC/CC] boundary conditions for I1 = I2 = I3 = I4 = 7 and half-wave numbers r= s= 1 and q= 1.

Table 13. Fundamental frequency �v(1)
11 of a hybrid four-layer

square plate with different electric boundary conditions and
slenderness ratios for I1 = I2 = I3 = I4 = 7.

Boundary
conditions

a=h= 2 a=h= 4 a=h= 10 a=h= 100

[OC/OC] 2.33432382 3.66169037 6.09657272 7.93449125
[OC/CC] 2.32897463 3.65844535 6.09481234 7.93443119
[CC/CC] 2.32363758 3.65524936 6.09322509 7.93442753
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Chebyshev polynomial nodes throughout the layers
and interfaces as well. The use of only Chebyshev poly-
nomial nodes makes it possible to minimize uniformly
the error due to the Lagrange interpolation. Therefore,
the developed SaS formulation gives an opportunity to
obtain the analytical solutions for the free vibration of
piezoelectric plates with a prescribed accuracy, which
asymptotically approach the exact solutions of electroe-
lasticity as the number of SaS goes to infinity.
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