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Modeling and analysis of spiral
actuators by exact geometry
piezoelectric solid-shell elements

GM Kulikov1 , SV Plotnikova1 and E Carrera2

Abstract
An exact geometry four-node piezoelectric solid-shell element through the sampling surfaces formulation is proposed.
The sampling surfaces formulation is based on choosing inside the shell N – 2 sampling surfaces parallel to the middle
surface and located at Chebyshev polynomial nodes to introduce the displacements and electric potentials of these sur-
faces as fundamental shell unknowns. The bottom and top surfaces are also included into a set of sampling surfaces.
Such choice of unknowns with the use of Lagrange polynomials of degree N – 1 in the through-the-thickness interpola-
tions of displacements, strains, electric potential, and electric field yields a robust piezoelectric shell formulation. To
implement efficient analytical integration throughout the solid-shell element, the extended assumed natural strain
method is employed. The developed hybrid-mixed four-node piezoelectric solid-shell element is based on the Hu-
Washizu variational principle and shows the excellent performance for coarse mesh configurations. It can be useful for
the 3D stress analysis of piezoelectric shells with variable curvatures, in particular for the modeling and analysis of spiral
actuators.
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1. Introduction

Nowadays, the piezoelectric ceramics are widely used
as actuators in transducers and advanced electronic sys-
tems. An interesting application of the piezoelectric
ceramics is a spiral actuator with the compact geometry
designed by Mohammadi et al. (1999), Allahverdi et al.
(2001), Li and Gianchandani (2006), and Lee et al.
(2008) in order to enlarge the field-induced displace-
ment in a tangential direction due to the nonuniform
stress distribution arisen under the applied voltage. In
the case of applying the electric field to a spiral actuator
in the poling direction across its thickness, the spiral tip
moves in tangential and radial directions. As it turned
out, the tangential displacement is more than 12 times
greater than the transverse displacement of the piezo-
electric strip of the same length under the same voltage
(Allahverdi et al., 2001). This problem attracted many
researchers (Lee et al., 2008; Li and Gianchandani,
2006; Zouari et al., 2009) who modeled the spiral actua-
tor with solid elements available in the literature.
However, the modeling of spiral actuators using solid
elements is too expensive (Zouari et al., 2009) because
very many elements should be used to describe the geo-
metry of the spiral properly.

More reliable results can be obtained through the
isoparametric six-parameter piezoelectric solid-shell ele-
ments (Klinkel and Wagner, 2006, 2008; Lee et al.,
2003; Lentzen, 2009; Sze et al., 2000; Sze and Yao,
2000; Tan and Vu-Quoc, 2005; Yao and Sze, 2009;
Zheng et al., 2004). These elements are defined by two
layers of nodes on outer surfaces of the shell with three
displacement degrees of freedom (DOFs) and one elec-
tric potential DOF per node. However, the six-
parameter solid-shell element formulation based on the
complete constitutive equations of piezoelectricity has a
deficiency because of Poisson thickness locking. This is
because the linear displacement field in the thickness
direction leads to a constant transverse normal strain,
which causes artificial stiffening of the shell element for
nonvanishing Poisson’s ratios. To avoid Poisson
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thickness locking, the 3D constitutive equations should
be modified using the generalized plane stress condi-
tions (Lee et al., 2003). The hybrid stress method (Sze
et al., 2000; Sze and Yao, 2000; Yao and Sze, 2009), in
which the transverse normal stress is assumed to be
constant through the thickness, and the most popular
enhanced assumed strain method (Klinkel and Wagner,
2006, 2008; Lentzen, 2009; Tan and Vu-Quoc, 2005;
Zheng et al., 2004), in which the transverse normal
strain is enriched in the thickness direction by a linear
term, can be also applied. Still, the isoparametric solid-
shell element formulation is computationally inefficient
because stresses and strains are analyzed in the global
and local orthogonal Cartesian coordinate systems,
although the normalized element coordinates represent
already convected curvilinear coordinates. The isopara-
metric solid elements can be also utilized efficiently for
the analysis of piezoelectric structures (see, for exam-
ple, Kpeky et al., 2018; Yi et al., 2000; Zouari et al.,
2012, 2015).

An alternative way is to develop the exact geometry
or geometrically exact (GeX) six-parameter piezoelec-
tric solid-shell element based on the direct use of curvi-
linear coordinates of the middle surface (Kulikov and
Plotnikova, 2008). The term GeX means that the
parametrization of the middle surface is known and,
therefore, the coefficients of the first and second funda-
mental forms and the Christoffel symbols are taken
exactly at element nodes. In contrast to the six-
parameter solid-shell element (Kulikov and Plotnikova,
2008), the GeX seven-parameter solid-shell elements
(Kulikov and Plotnikova, 2010, 2011a) are based on
the choice of six displacements and two electric poten-
tials of outer surfaces and the transverse displacement
of the middle surface. The seven-parameter shell for-
mulation is optimal concerning the number of DOFs
and allows the use of complete constitutive equations
of piezoelectricity. The more general GeX nine-
parameter solid-shell elements, in which nine displace-
ments and three electric potentials of outer and middle
surfaces are introduced as basic shell unknowns, have
been developed by Kulikov and Plotnikova (2011b,
2015). In this model, the Lagrange polynomials of the
second degree are utilized to describe the approxima-
tions of displacements, strains, electric potential, and
electric field through the thickness that makes possible
to derive the strain-displacement equations, which
exactly represent all rigid body motions of the shell in
curvilinear coordinates of the middle surface. This fact
is of great importance since one may read in paper
(Buechter and Ramm, 1992) that ‘‘shell theory is an
absolute academic exercise’’ due to ‘‘the difficulties of
representing the rigid body modes in shell finite element
formulations.’’

It should be noted that the aforementioned isopara-
metric and GeX piezoelectric solid-shell elements
(Klinkel and Wagner, 2006, 2008; Kulikov and

Plotnikova, 2008, 2010, 20011a, 2011b, 2015; Lee et al.,
2003; Lentzen, 2009; Sze et al., 2000; Sze and Yao,
2000; Tan and Vu-Quoc, 2005; Yao and Sze, 2009;
Zheng et al., 2004) cannot describe properly the trans-
verse components of the stress tensor and the electric
displacement vector. To solve the problem, the higher-
order models should be invoked (Carrera et al., 2011;
Vidal et al., 2016). The robust GeX higher-order piezo-
electric solid-shell elements have been developed by
Carrera et al. (2011, 2014) through the Carrera’s uni-
fied formulation (Carrera, 2003). In contributions
(Carrera et al., 2018; Carrera and Valvano, 2017;
Cinefra et al., 2015), the shear and membrane locking
phenomena are prevented by using the mixed interpola-
tion of tensorial components (MITC) technique (Bathe
and Dvorkin, 1986). These higher-order solid-shell ele-
ments were applied efficiently to the 3D stress analysis
of piezoelectric plates and cylindrical shells. As it
turned out, the evaluation of the transverse normal
stress and electric displacement is not a simple problem
because using even the fourth-order Legendre polyno-
mials in the through-thickness approximations of dis-
placements does not provide fulfilling the boundary
conditions for these components on outer surfaces
(Cinefra et al., 2015).

The objective of this work is to overcome the above
difficulties and develop the higher-order piezoelectric
solid-shell element that permits the evaluation of all
stress and electric displacement components for the
shell structures of complicated geometry with applica-
tions to the spiral actuators. For this purpose, the GeX
four-node piezoelectric solid-shell element through the
sampling surfaces (SaS) formulation (Kulikov and
Plotnikova, 2013) is proposed. The SaS formulation is
based on choosing throughout the shell N not equally
spaced surfaces parallel to the middle surface to intro-
duce the displacements and electric potentials of these
surfaces as fundamental shell unknowns, where N ø 3.
Such choice of unknowns with the use of Lagrange
polynomials of degree N � 1 in the assumed through-
thickness distributions of displacements, strains, electric
potential and electric field yields a very compact piezo-
electric shell formulation. Recently, the SaS formula-
tion has been employed to analyze analytically and
numerically the electroelastic and thermoelectroelastic
response of laminated and functionally graded piezo-
electric plates and cylindrical shells (Kulikov et al.,
2015, 2018; Kulikov and Plotnikova, 2017a, 2017b).

The SaS method can be traced to contributions
(Kulikov, 2001; Kulikov and Carrera, 2008; Kulikov
and Plotnikova, 2011c) in which the equispaced SaS
are utilized. The more general approach with the SaS
located at Chebyshev polynomial nodes, that is, the
roots of the Chebyshev polynomial (Bakhvalov, 1977)
has been proposed by Kulikov and Plotnikova (2013)
since the SaS formulation with equally spaced SaS does
not work properly with the higher-order Lagrange
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interpolation. The use of Chebyshev polynomial nodes
improves the behavior of high-degree Lagrange polyno-
mials because it allows one to minimize uniformly the
error due to the Lagrange interpolation.

In the present article, the GeX hybrid-mixed four-
node piezoelectric solid-shell element is developed with
the SaS located at Chebyshev nodes or Chebyshev-
Gauss-Lobatto points. To prevent shear and membrane
locking, the assumed interpolations of displacement-
independent strains and stresses are employed. For this
purpose, the Hu-Washizu variational principle is
invoked. This approach has some computational
advantages compared with conventional isoparametric
hybrid-mixed piezoelectric solid-shell element formula-
tions. This is because the element matrices are evalu-
ated with no expensive numerical matrix inversion. It is
impossible in the framework of the isoparametric
hybrid-mixed shell elements (Hoa and Feng, 1998). The
important feature of the GeX solid-shell element is the
use of effective analytical integration throughout the
element by an extended assumed natural strain (ANS)
method (Kulikov and Plotnikova, 2015).

The proposed GeX/SaS piezoelectric solid-shell ele-
ment formulation is characterized by the following fea-
tures and new developments:

� Here, we do not exclude the electric displace-
ment vector from the SaS solid-shell element for-
mulation using the constitutive equations as in
Kulikov et al. (2018) because it is more efficient
to utilize the SaS approximation for the electric
displacement components (equation 8). This
novelty simplifies the implementation of the
hybrid-mixed method and allows the presenta-
tion of governing equations in terms of only SaS
variables that provides superior performance in
the case of coarse meshes.

� To show that the proposed GeX piezoelectric
solid-shell element is free of spurious zero-energy
modes, we consider the eigenvalues problem for
a piezoelectric rectangular parallelepiped. As it
turned out, there exist exactly seven zero-energy
modes, namely six modes related to the rigid
body motions and one to the short circuit.

� The coupled electromechanical model (Kulikov
et al., 2018) is extended to the 3D stress analysis
of the piezoelectric shells of complicated geome-
try with particular attention to the spiral actua-
tors whose middle surface can be described by
orthogonal curvilinear coordinates.

2. SaS formulation for piezoelectric shell

Consider a shell of the thickness h. The middle surface
O is described by orthogonal curvilinear coordinates u1

and u2, which are referred to the lines of principal

curvatures of its surface. The coordinate u3 is oriented
along the unit vector e3 normal to the middle surface.
Introduce the following notations: ea are the orthonor-
mal base vectors of the middle surface; ca = 1+ kau3

are the components of the shifter tensor; ka are the
principal curvatures of the middle surface; cI

a =
ca(u

I
3)= 1+ kauI

3 are the components of the shifter
tensor at SaS OI depicted in Figure 1; uI

3 are the trans-
verse coordinates of SaS defined as

u1
3 = � h

2
, uN

3 =
h

2

un
3 = � h

2
cos p

2n� 3

2(N � 2)

� �
, n= 2, :::, N � 1

ð1Þ

where N is the number of SaS. Here and in the follow-
ing developments, the indices I , J , K identify the
belonging of any quantity to the SaS and run from 1 to
N; Latin indices i, j, k, l range from 1 to 3; Greek
indices a, b range from 1 to 2.

It is worth noting that the inner SaS are located at
the roots of the Chebyshev polynomial of degree N � 2

(Bakhvalov, 1977). However, the SaS located at
Chebyshev-Gauss-Lobatto points can be also utilized

uI
3 = � h

2
cos p

I � 1

N � 1

� �
ð2Þ

The through-thickness SaS approximations (Kulikov
and Plotnikova, 2013) can be written as

ui =
X

I

LI uI
i , uI

i = ui(u
I
3) ð3Þ

eij =
X

I

LIeI
ij, eI

ij = eij(u
I
3) ð4Þ

sij =
X

I

LI sI
ij, sI

ij =sij(u
I
3) ð5Þ

f=
X

I

LI fI , fI =f(uI
3) ð6Þ

Figure 1. Geometry of the piezoelectric shell.
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Ei =
X

I

LI EI
i , EI

i =Ei(u
I
3) ð7Þ

Di =
X

I

LI DI
i , DI

i =Di(u
I
3) ð8Þ

where ui, eij, sij, f, Ei, and Di are the displacements,
strains, stresses, electric potential, electric field, and
electric displacement; uI

i (u1, u2), eI
ij(u1, u2), sI

ij(u1, u2),
fI (u1, u2), EI

i (u1, u2), and DI
i (u1, u2) are the displace-

ments, strains, stresses, electric potential, electric
field, and electric displacement of SaS OI ; LI (u3) are
the Lagrange basis polynomials of degree N � 1

defined as

LI =
Y
J 6¼I

u3 � uJ
3

uI
3 � uJ

3

ð9Þ

In an orthonormal basis ei, the relations between
SaS strains and SaS displacements (Kulikov and
Plotnikova, 2013) are expressed as

2eI
ab =

1

cI
b

lI
ab +

1

cI
a

lI
ba ð10Þ

2eI
a3 =bI

a +
1

cI
a

lI
3a, eI

33 =bI
3

where lI
ia are the strain parameters of SaS; bI

i = ui, 3(u
I
3)

are the values of displacement derivatives with respect
to the thickness coordinate on SaS given by

lI
aa =

1

Aa

uI
a,a +BauI

b + kauI
3 ð11Þ

lI
ba =

1

Aa

uI
b,a � BauI

a for b 6¼ a

lI
3a =

1

Aa

uI
3,a � kauI

a, Ba =
1

AaAb

Aa,b for b 6¼ a

bI
i =

X
J

MJ (uI
3)u

J
i

where Aa are the coefficients of the first fundamental
form; the symbol (:::), i stands for the partial deriva-

tives with respect to coordinates ui; MJ =LJ
, 3 are the

polynomials of degree N � 2 whose values on SaS

MJ (uI
3) are calculated according to Kulikov and

Plotnikova (2013).
In an orthonormal basis ei, the relations between the

electric field and electric potentials of SaS (Kulikov and
Plotnikova, 2013) are written as

EI
a = � 1

AacI
a

fI
,a, EI

3 = �
X

J

MJ (uI
3)f

J ð12Þ

3. Electroelastic energy of piezoelectric
shell

The constitutive equations in terms of SaS variables
(Kulikov and Plotnikova, 2013) are expressed as

sI =CeI � eTEI ð13Þ

DI = eeI + 2 EI ð14Þ

where

eI = eI
11 eI

22 eI
33 2eI

12 2eI
13 2eI

23

� �T
, EI = EI

1 EI
2 EI

3

� �T
sI = sI

11 sI
22 sI

33 sI
12 sI

13 sI
23

� �T
, DI = DI

1 DI
2 DI

3

� �T

C=

C1111 C1122 C1133 C1112 0 0

C2211 C2222 C2233 C2212 0 0

C3311 C3322 C3333 C3312 0 0

C1211 C1222 C1233 C1212 0 0

0 0 0 0 C1313 C1323

0 0 0 0 C2313 C2323

2
666666664

3
777777775

e=

0 0 0 0 e113 e123

0 0 0 0 e213 e223

e311 e322 e333 e312 0 0

2
64

3
75

‰=

211 212 0

221 222 0

0 0 233

2
64

3
75

ð15Þ

where Cijkl, ekij, and 2ij are the elastic, piezoelectric, and
dielectric constants.

Substituting through-thickness distributions (4), (5),
(7), and (8) in the electroelastic energy (Carrera et al.,
2011), one obtains

H=
1

2

ðð
O

X
I

X
J

L
IJ ½(sI )

T
eJ � (DI )

T
EJ �A1A2du1du2 ð16Þ

where LIJ are the weighted coefficients defined as

LIJ =

ðh=2

�h=2

LI LJ c1c2du3 ð17Þ

The use of equations (13), (14), and (16) leads to a
final form of the electroelastic energy in terms of SaS
variables

H =

ðð
O

X
I

X
J

LIJ

1

2
(eI )TCeJ � (EI )TeeJ � 1

2
(EI )T 2 EJ

� �
A1A2du1du2

ð18Þ
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4. Hybrid-mixed finite element
formulation

To develop the hybrid-mixed piezoelectric solid-shell
element formulation, we introduce the displacement-
independent strains hij and assume that they are dis-
tributed through the thickness of the shell according to
displacement-dependent strain distribution (equation 4)

hij =
X

I

LI hI
ij, hI

ij =hij(u
I
3) ð19Þ

where hI
ij(u1, u2) are the displacement-independent

strains of SaS.
Taking into account equations (18) and (19), the

Hu-Washizu variational principle of piezoelectricity
(Kulikov and Plotnikova, 2008) can be represented as
follows

d

ðð
O

X
I

X
J

LIJ 1

2
(hI )

T
ChJ � (EI )

T
ehJ

�

� 1

2
(EI )

T 2 EJ � (sI )
T
(hJ � eJ )

�
A1A2du1du2 = dW

ð20Þ

where hI = hI
11 hI

22 hI
33 2hI

12 2hI
13 2hI

23

� �T
are

displacement-independent strain vectors of SaS; W is
the work done by electromechanical loads applied to
the outer surfaces O� and O+

W =

ðð
O

(p+)
T
uN � Q+fN

� 	
A1A2c+1 c+2 du1du2

�
ðð
O

(p�)Tu1 +Q�f1

 �

A1A2c�1 c�2 du1du2 + Ŵ

ð21Þ

where p�= ½p�1 p�2 p�3 �
T and p+ = ½p+1 p+2 p+

3 �
T are

the traction vectors on the outer surfaces; Q� and Q+

are the charge densities per unit area of outer surfaces;
u1 = u1

1 u1
2 u1

3

� �T
and uN = uN

1 uN
2 uN

3

� �T
are the displa-

cement vectors of outer surfaces; f1 and fN are the
electric potentials of outer surfaces; c�a = 1� kah=2

and c+a = 1+ kah=2 are the components of the shifter
tensor on the outer surfaces; Ŵ is the work done by
external electromechanical loads applied to the bound-
ary surface.

The GeX piezoelectric solid-shell element formula-
tion is based on the use of the bilinear interpolations of
displacements and electric potentials of SaS

uI
i =

X
r

Nru
I
ir ð22Þ

fI =
X

r

Nrf
I
r ð23Þ

where Nr j1, j2ð Þ are the bilinear shape functions; uI
ir

and fI
r are the displacements and electric potentials of

SaS at element nodes; j1, j2 are the normalized curvi-
linear coordinates u1, u2 (Figure 2); the nodal index r
runs from 1 to 4.

To perform effective analytical integration through-
out the solid-shell element, the extended ANS method
(Kulikov and Plotnikova, 2015) can be applied

eI =
X

r

Nre
I
r, eI

r = eI
11r eI

22r eI
33r 2eI

12r 2eI
13r 2eI

23r

� �T

ð24Þ

EI =
X

r

NrE
I
r, EI

r = EI
1r EI

2r EI
3r

� �T ð25Þ

where eI
ijr and EI

ir are the strains and electric field of SaS
at element nodes.

This method can be traced back to the ANS method
widely used in the literature to circumvent shear, mem-
brane, and curvature thickness locking in isoparametric
finite elements (Bathe and Dvorkin, 1986; Betsch and
Stein, 1995; Hughes and Tezduyar, 1981; Ko et al.,
2017; MacNeal, 1982; Park and Stanley, 1986).
However, we treat the term ANS in a broader sense. In
the proposed GeX four-node piezoelectric solid-shell ele-
ment formulation, all components of the displacement-
dependent strain tensor and electric field are assumed to
vary bilinearly inside the biunit square in (j1, j2)-space.
This implies that instead of expected nonlinear interpola-
tions because of equations (10)–(12) the more suitable
bilinear interpolations (24) and (25) are employed.

The SaS strains at element nodes are written as

eI
r =BI

urq ð26Þ

q= qT1 qT2 qT3 qT4
� �T

,

qr = u1
1r u1

2r u1
3r u2

1r u2
2r u2

3r ::: uN
1r uN

2r uN
3r

� �T ð27Þ

where BI
u r are the constant matrices of order 6 3 12N ; q

is the element displacement vector of order 12N.
The electric field vectors of SaS at element nodes are

given by

EI
r = � BI

f rF ð28Þ

F= FT
1 FT

2 FT
3 FT

4

� �T
, Fr = f1

r f2
r :::: fN

r

� �T ð29Þ
where BI

f r are the constant matrices of order 3 3 4N ; F
is the element electric potential vector of order 4N.

Furthermore, it is convenient to rewrite the ANS
interpolation (24) in the following form

eI =
X
r1, r2

j1ð Þr1 j2ð Þr2eI
r1r2

, eI
r1r2

=BI
ur1r2

q ð30Þ

where
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eI
r1r2

= eI
11r1r2

eI
22r1r2

eI
33r1r2

2eI
12r1r2

2 eI
13r1r2

2eI
23r1r2

h iT
ð31Þ

BI
u00 =

1

4
BI

u1 +BI
u2 +BI

u3 +BI
u4


 �

BI
u01 =

1

4
BI

u1 +BI
u2 � BI

u3 � BI
u4


 �

BI
u10 =

1

4
BI

u1 � BI
u2 � BI

u3 +BI
u4


 �

BI
u11 =

1

4
BI

u1 � BI
u2 +BI

u3 � BI
u4


 �

The same modification concerns the ANS interpola-
tion (25)

EI =
X
r1, r2

j1ð Þr1 j2ð Þr2EI
r1r2

, EI
r1r2

= � BI
f r1r2

F ð32Þ

where

EI
r1r2

= ½EI
1r1r2

EI
2r1r2

EI
3r1r2
�T ð33Þ

BI
f00 =

1

4
BI

f1 +BI
f2 +BI

f3 +BI
f4

� 	

BI
f01 =

1

4
BI

f1 +BI
f2 � BI

f3 � BI
f4

� 	

BI
f10 =

1

4
BI

f1 � BI
f2 � BI

f3 +BI
f4

� 	

BI
f11 =

1

4
BI

f1 � BI
f2 +BI

f3 � BI
f4

� 	

Here and below, the indices r1 and r2 run from 0 to 1.
To prevent shear and membrane locking and have

no spurious zero-energy modes (Kulikov et al., 2018),
the displacement-independent strain interpolation is
utilized

hI =
X

r1 + r2\2

j1ð Þr1 j2ð Þr2Qr1r2
hI

r1r2
ð34Þ

hI
00 = cI

1 cI
2 cI

3 cI
4 cI

5 cI
6

� � T

hI
01 = cI

7 cI
9 cI

11

� � T
, hI

10 = cI
8 cI

10 cI
12

� � T

where Qr1r2
are the projective matrices given by

Figure 2. Biunit square in j1, j2ð Þ-space mapped into the middle surface of the GeX four-node solid-shell element in x1, x2, x3ð Þ-
space.
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Q00 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

Q01 =

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

2
666666664

3
777777775
, Q10 =

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

2
666666664

3
777777775

ð35Þ

The similar interpolation is accepted for stresses

sI =
X

r1 + r2\2

j1ð Þr1 j2ð Þr2Qr1r2
sI

r1r2
ð36Þ

sI
00 = mI

1 mI
2 mI

3 mI
4 mI

5 mI
6

� �T
sI

01 = mI
7 mI

9 mI
11

� � T
, sI

10 = mI
8 mI

10 mI
12

� � T

Substituting interpolations (22), (23), (30), (32), (34),
and (36) in the Hu-Washizu variational equations (20)
and (21), replacing the metric product A1A2 in surface
integrals by its value at the element center and integrat-
ing analytically throughout the finite element, one can
derive the element equilibrium equations. Eliminating
then strain and stress parameters cI

l and mI
l

(l = 1, 2, :::, 12), the following linear equations of the
GeX hybrid-mixed four-node solid-shell element are
obtained

Kuu Kuf

Kfu Kff

� �
q

F

� �
=

Fu

Ff

� �
ð37Þ

where Kuu, Kuf, Kfu =KT
uf, and Kff are the mechani-

cal, piezoelectric, and dielectric stiffness matrices; Fu

and Ff are the element-wise mechanical and electric
surface vectors given by

Kuu =
X

I

X
J

LIJ
X

r1 + r2\2

1

3r1 + r2
ðBI

ur1 r2
ÞT

Qr1 r2
QT

r1 r2
CQr1 r2

QT
r1 r2

BJ
ur1r2

ð38Þ

Kuf =
X

I

X
J

LIJ
X

r1 + r2\2

1

3r1 + r2
ðBI

ur1r2
ÞTQr1 r2

QT
r1 r2

eTBJ
f r1r2

Kff = �
X

I

X
J

L
IJ

X
r1 + r2 ł 2

1

3r1 + r2
ðBI

fr1r2
ÞT 2 BJ

fr1r2

Fu= FT
u1 F

T
u2 FT

u3 FT
u4

� �T
, Fur= f �1r f �2r f �3r 0 0 ::: 0 f +1r f +2r f +3r

� �T
Ff = FT

f1 FT
f2 FT

f3 FT
f4

h iT
, Ffr = g�r 0 0 ::: 0 g+

r

� �T

where

f �ir = �
ð1

�1

ð1

�1

Nrp
�
i c�1 c�2 dj1dj2

f +ir =

ð1

�1

ð1

�1

Nrp
+
i c+1 c+2 dj1dj2

ð39Þ

g�r = �
ð1

�1

ð1

�1

NrQ
� c�1 c�2 dj1dj2

g+
r = �

ð1

�1

ð1

�1

NrQ
+c+1 c+2 dj1dj2

It is worth noting that all stiffness matrices are eval-
uated without the expensive numerical matrix inversion
that is impossible in available isoparametric hybrid-
mixed finite element formulations (Hoa and Feng,
1998).

The equilibrium equations (37) for each element are
assembled by a standard technique to form the global
equilibrium equations. To manage the mechanical and
electric boundary conditions, the common algorithms
(Zienkiewicz and Taylor, 2000) can be applied.

5. Numerical examples

The developed GeX four-node piezoelectric solid-shell
element is evaluated through two benchmarks to
demonstrate its ability to analyze piezoelectric devices
accurately. Then it is applied to the analysis and model-
ing of piezoelectric spiral actuators.

5.1. Eigenvalue problem

In the first example, the eigenvalues of a piezoelectric
sample are investigated. This example is employed to
verify that the proposed hybrid-mixed solid-shell ele-
ment does not suffer from the zero-energy modes. The
similar testing of the isoparametric six-parameter
hybrid-mixed element has been carried out by Klinkel
and Wagner (2008). Here, a piezoelectric rectangular
parallelepiped with the edge lengths of
2 cm3 2 cm3 0:2 cm is considered. The material prop-
erties are taken as follows (Klinkel and Wagner, 2008)

E1 =E2 =0:0062 GN=cm2, E3 =0:0054 GN=cm2,

n12 = n13 = n23 = 0:31

G12 =0:0018 GN=cm2, G13 =G23 =0:00236 GN=cm2,

211 =222 =233 =0:0023 C2=GN � cm2

e311 = e322 = � 0:0012C=cm2, e333 = 0:00173C=cm2,

e113 = e223 = 0:00158C=cm2
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Tables 1 and 2 list the results of solving the eigenva-
lue problem taking three and four SaS inside the paral-
lelepiped. As can be seen, there exist seven zero-energy
modes exactly for both cases considered, namely six
modes related to the rigid body motions and one to the
short circuit. All other deformation modes are associ-
ated with nonzero eigenvalues. The use of five and more
SaS leads to a similar conclusion. Let us pay attention
to appearing correspondingly 11 and 15 negative eigen-
values in Tables 1 and 2. This is because of the negative
dielectric stiffness matrix of order 4N 3 4N given in
equation (38). Thus, the developed GeX solid-shell ele-
ment is free of spurious zero-energy modes at least for
the bodies of simple geometry.

5.2. Simply supported piezoelectric cylindrical shell

Consider a simply supported piezoelectric cylindrical
shell of the length L subjected to electric loading on the
top surface whereas the bottom surface is electrically
grounded

f�= 0, f+ =f0 sin
pu1

L
cos 2u2 ð40Þ

where f0 = 1V. The bottom and top surfaces of the
shell are assumed to be traction free. The shell is com-
posed of the PZT-4 with the material properties
(Heyliger, 1997; Kulikov and Plotnikova, 2013)

C1111 =C2222 =139:0GPa, C3333 =115:0GPa,

C1122 =77:8GPa

C1133 =C2233 = 74:3GPa, C1313 =C2323 = 25:6GPa,

C1212 =30:6GPa

e311 = e322 = � 5:2C=m2, e333 = 15:08C=m2,

e113 = e223 =12:72C=m2

211 =222 = 13:06nF=m, 233 = 11:51nF=m

Due to symmetry of the problem (see Figure 3), only
one octant of the shell (0 ł u1 ł L=2, 0 ł u2 ł p=2) is
modeled by a uniform mesh 48 3 96. To analyze the

Table 1. Eigenvalues of a piezoelectric rectangular parallelepiped with three SaS.

No. Eigenvalue No. Eigenvalue No. Eigenvalue No. Eigenvalue

1 1.9�10–19 13 28.8�10–3 25 9.2�10–5 37 2.4�10–2

2 4.6�10–18 14 21.0�10–2 26 9.2�10–5 38 2.4�10–2

3 8.3�10–18 15 22.6�10–2 27 1.6�10–4 39 2.5�10–2

4 9.0�10–18 16 23.5�10–2 28 1.9�10–4 40 2.5�10–2

5 2.1�10–17 17 23.5�10–2 29 2.4�10–4 41 3.1�10–2

6 3.0�10–17 18 21.0�10–1 30 3.0�10–4 42 3.2�10–2

7 3.8�10–17 19 1.6�10–7 31 3.0�10–4 43 7.5�10–2

8 21.5�10–4 20 1.5�10–6 32 3.9�10–4 44 9.5�10–2

9 22.2�10–4 21 4.3�10–5 33 5.2�10–4 45 9.5�10–2

10 22.2�10–4 22 4.4�10–5 34 1.3�10–3 46 9.9�10–2

11 22.6�10–3 23 4.4�10–5 35 7.9�10–3 47 9.9�10–2

12 28.8�10–3 24 7.6�10–5 36 8.2�10–3 48 3.0�10–1

Table 2. Eigenvalues of a piezoelectric rectangular parallelepiped with four SaS.

No. Eigenvalue No. Eigenvalue No. Eigenvalue No. Eigenvalue

1 3.2�10–18 17 28.7�10–2 33 1.2�10–4 49 1.6�10–2

2 6.4�10–18 18 28.7�10–2 34 1.7�10–4 50 4.8�10–2

3 1.5�10–17 19 29.3�10–2 35 1.7�10–4 51 7.8�10–2

4 2.3�10–17 20 29.3�10–2 36 1.7�10–4 52 7.9�10–2

5 2.9�10–17 21 22.6�10–1 37 1.8�10–4 53 8.4�10–2

6 5.9�10–17 22 22.8�10–1 38 2.9�10–4 54 8.5�10–2

7 1.1�10–16 23 2.5�10–8 39 6.6�10–4 55 2.3�10–1

8 21.1�10–4 24 1.1�10–7 40 6.6�10–4 56 2.3�10–1

9 21.7�10–4 25 6.6�10–6 41 7.3�10–4 57 2.4�10–1

10 21.7�10–4 26 2.7�10–5 42 1.2�10–3 58 2.4�10–1

11 21.7�10–3 27 2.7�10–5 43 2.8�10–3 59 2.5�10–1

12 25.7�10–3 28 4.0�10–5 44 5.1�10–3 60 2.5�10–1

13 25.7�10–3 29 4.0�10–5 45 5.5�10–3 61 2.7�10–1

14 21.7�10–2 30 4.3�10–5 46 1.5�10–2 62 2.7�10–1

15 22.6�10–2 31 4.7�10–5 47 1.5�10–2 63 7.4�10–1

16 22.8�10–2 32 6.9�10–5 48 1.6�10–2 64 7.9�10–1
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results efficiently, we introduce the following scaled
variables at crucial points

�u1(z)= 1011 3 u1(L, 0, z)=S, �u2(z)= 1011

3 u2(L=2, p=4, z)=S, �u3(z)= 1011

3 u3(L=2, 0, z)=S

�s11(z)= 10�3 3 s11(L=2, 0, z), �s22(z)= 10�3

3 s22(L=2, 0, z), �s33(z)= 10�2 3 Ss33(L=2, 0, z)

�s13(z)= 10�3 3 Ss13(L, 0, z), �s23(z)= 10�3

3 Ss23(L=2, p=4, z)

�u(z)=f(L=2, 0, z), �D3(z)= 106 3 D3(L=2, 0, z)=S,

z= u3=h

where S =R+=h is the slenderness ratio; R+ is the
radius of the top cylindrical surface.

Tables 3 and 4 list the results of the convergence
study for thick and moderately thick cylindrical shells
with L=R+ = 0:01m by increasing a number of SaS
N. The obtained results are compared with the exact
SaS solution (Kulikov and Plotnikova, 2013). Figure 4
shows the effect of a number of SaS on the through-
thickness distributions of transverse components of the
stress tensor and electric displacement vector for a
thick piezoelectric cylindrical shell with S = 4 using a
fine 48 3 96 mesh compared with the exact SaS solu-
tion (Kulikov and Plotnikova, 2013). It is seen that the
choice of three SaS inside the shell body yields unaccep-
table results. To satisfy the boundary conditions for the
transverse normal stress on outer surfaces, more than
five SaS have to be taken. Figures 5 and 6 display the
through-thickness distributions of displacements, elec-
tric potential, electric displacement, and stresses for dif-
ferent slenderness ratios using five SaS for S = 10 and
100, seven SaS for S = 4, and nine SaS for S = 2 and
the same fine mesh. These results demonstrate the high
potential of the proposed GeX hybrid-mixed piezoelec-
tric solid-shell element formulation. This is due the fact
that the boundary conditions on the bottom and top
surfaces for transverse stresses are satisfied with a high
accuracy.

The results of the convergence study due to mesh
refinement are presented in Figure 7. The analytical
answer is provided by the exact SaS solution (Kulikov
and Plotnikova, 2013) given in Table 5. Here, we con-
sider regular 4k 3 8k meshes, which are characterized
by the mesh parameter k = 1, 2, 4, 8, and 12. As can
be seen, the proposed GeX solid-shell element behaves
well in the case of coarse meshes, especially in thin shell
limits.

Table 3. Results for a piezoelectric cylindrical shell with S= 2 using uniform mesh 48396.

N �u1(0:5) �u2(0:5) �u3(0) �u 0ð Þ �s22(0:5) �s13(0) �s23(0) �s33(0) �D3(0)

3 8.722 8.492 21.644 0.3558 21.318 20.672 20.5463 8.2003 21.549
5 8.955 8.636 21.805 0.3648 22.172 21.104 20.8863 0.8709 21.327
7 8.962 8.638 21.800 0.3660 22.278 21.087 20.8903 0.7039 21.339
9 8.962 8.638 21.801 0.3661 22.271 21.087 20.8920 0.6801 21.339
11 8.962 8.638 21.801 0.3660 22.270 21.087 20.8918 0.6816 21.339
Exact 8.963 8.637 21.800 0.3660 22.267 21.088 20.8924 0.6816 21.340

Table 4. Results for a piezoelectric cylindrical shell with S= 10 using uniform mesh 48396.

N �u1(0:5) �u2(0:5) �u3(0) �u 0ð Þ �s22(0:5) �s13(0) �s23(0) �s33(0) �D3(0)

3 6.091 0.2574 12.14 0.5259 2.499 25.770 23.465 214.00 21.680
5 6.094 0.2533 12.12 0.5260 2.245 27.720 24.498 211.83 21.669
7 6.094 0.2533 12.13 0.5260 2.245 27.716 24.496 211.74 21.669
9 6.094 0.2533 12.13 0.5260 2.245 27.716 24.496 211.74 21.669
Exact 6.095 0.2527 12.13 0.5260 2.245 27.719 24.497 211.89 21.670

Figure 3. One octant of the piezoelectric cylindrical shell.
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5.3. Piezoelectric spiral actuator

Consider a spiral actuator consisting of four turns as
depicted in Figure 8. The coefficients of the first funda-
mental form and principal curvatures of the middle sur-
face from strain-displacement equations (10) and (11)
are written as follows

A1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + r2
p

, A2 = 1, k1 =
1

A3
1

2a2 + r2

 �

, k2 = 0

r = r0 + au1, u1 2 0, 8p½ �
ð41Þ

where r is the polar radius; a is the parameter that con-
trols the distance between successive turnings; r0 is the
initial radius.

The actuator is polarized in the thickness direction
and clamped at point u1 = 0. In the case of applying the
radial electric field in the poling direction, the spiral tip
moves in tangential and radial directions. As it turned
out, the tangential displacement is much larger than the
transverse tip displacement of a piezoelectric strip of
the same length under the same voltage (Mohammadi
et al., 1999). The tangential tip displacement of the
spiral actuator with the effective length L= 260mm,
external diameter d = 30mm, thickness h= 0:95mm,
and width b= 3:7mm under the applied voltage is
shown in Figure 9. The transverse tip displacement of
the piezoelectric strip with the same length, thickness,
and width is also presented. Both actuators are made of
the PZT-5H ceramic. However, its material properties
are not documented by Mohammadi et al. (1999). Here,

Figure 4. Through-thickness distributions of stresses and electric displacement for a thick piezoelectric cylindrical shell with S= 4
using 48396 mesh compared with the exact SaS solution (Kulikov and Plotnikova, 2013) using seven SaS (s).
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we consider a PZT-5H with the following material
properties (Cheng et al., 2000; Heinonen et al., 2005)

E1 =E2 = 61GPa, E3 = 48 GPa, n12=n13=n23 = 0:31

G12 = 23:3GPa, G13 =G23 = 19:1 GPa,

211 =222 = 15:052nF=m, 233 = 13:015nF=m

e311 = e322 = � 14:645C=m2, e333 = 21:319C=m2,

e113 = e223 =15:414C=m2

Due to symmetry, only one half of the spiral shell
(0 ł u1 ł 8p, 0 ł u2 ł b=2) is modeled by a regular
64 3 4 mesh of GeX solid-shell elements using five SaS.

The geometrical parameters of the spiral are chosen to
be a= 0:448mm=rad and r0 = 4:7mm that corre-
sponds to spiral geometry of Mohammadi et al. (1999).
As expected, the experimental response is nonlinear but
for the considered voltage range it is close to linear
and, therefore, a good agreement between experimental
and numerical results is observed.

For the further analysis, it is convenient to introduce
the scaled variables at any point P(u1, 0) belonging to
the middle surface as functions of the dimensionless
thickness coordinate as follows

�u1(P, z)= 106 3 u1(P, z), �u3(P, z)= 106 3 u3(P, z),

�s11(P, z)= 10�3 3 s11(P, z)

Figure 5. Through-thickness distributions of displacements, electric potential and electric displacement for a piezoelectric
cylindrical shell using five SaS for S = 10 and 100, seven SaS for S = 4, and nine SaS for S = 2 and 48396 mesh compared with the
exact SaS solution (Kulikov and Plotnikova, 2013) using the same number of SaS (s).
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�s22(P, z)= 10�3 3 s22(P, z), �s13(P, z)=10�3

3 s13(P, z), �s33(P, z)= 10�3 3 s33(P, z)

�u(P, z)=f(P, z), �D3(P, z)= 103 3 D3(P, z), z= u3=h

Figures 10 and 11 show the through-thickness distri-
butions of displacements, electric potential, electric dis-
placement, and stresses at points A, B, C, and D using
five SaS under the applied voltage of 200 V. These
results demonstrate again the high potential of the GeX
piezoelectric solid-shell element formulation because
boundary conditions on the bottom and top surfaces
for transverse stresses are satisfied correctly.

Figure 12 displays the results of the convergence
study due to the mesh refinement using regular K1 3 K2

meshes, where K1 = 16k is the number of elements in
the u1-direction that characterized by the mesh para-
meter k = 1, 2, 4, 8, and K2 is the number of elements
in the u2-direction, that is, across the width. As can be
seen, the developed GeX solid-shell element with five
SaS behaves excellently for coarse mesh configurations.
In particular, the displacements and electric potential
can be calculated with a good accuracy by using one or
two elements across the width. However, to evaluate
stresses well, we have to take not less than eight
elements.

Finally, we investigate the effect of a number of
spiral turns and the initial radius r0 on the tangential
tip displacement using five SaS and a regular mesh
60 3 4. Consider spiral actuators consisting of three,

Figure 6. Through-thickness distributions of stresses for a piezoelectric cylindrical shell using five SaS for S = 10 and 100, seven
SaS for S = 4, and nine SaS for S = 2 and 48396 mesh compared with the exact SaS solution (Kulikov and Plotnikova, 2013) using
the same number of SaS (s).
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four, and five turns with L= 260mm, h= 0:95mm,
and b= 3:7mm under the applied voltage of 200 V.
The initial radius takes eight values from 1.5 to 5 mm
in increments of 0.5 mm. The geometric parameters of

the spirals are given in Table 6. The spiral parameter a
is found by solving the equation

ð2pm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + r2
p

du1 = L ð42Þ

where m is the number of turns. Then, the external dia-
meter d can be defined by

d = 2r0 + h+ 2(2m� 1)pa ð43Þ

Figure 13 shows the tangential tip displacement as
a function of the number of turns and the initial
radius. It can be seen that spiral actuators with the
smallest initial radius have the greatest displacement
of the tip.

Figure 7. Convergence study due to mesh refinement for a piezoelectric cylindrical shell using five SaS for S = 10 and 100, seven
SaS for S = 4, and nine SaS for S = 2: the reference values are provided by Table 5.

Table 5. Reference values of displacements and electric
potential for a piezoelectric cylindrical shell (Kulikov and
Plotnikova, 2013) using five SaS for S = 10 and 100, seven SaS
for S = 4, and nine SaS for S = 2.

S �ue
1(0:5) �ue

2(0:5) �ue
3(0) �ue 0ð Þ

2 8.963 8.637 21.800 0.3660
4 6.925 3.992 3.386 0.4950
10 6.095 0.2527 12.13 0.5260
100 4.213 22.338 17.28 0.5042
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Figure 8. Spiral actuator with four turns.

Figure 9. Tangential and transverse tip displacements of spiral
and straight actuators, correspondingly, versus an applied
voltage: the proposed GeX four-node solid-shell element (solid
lines), experimental results (Mohammadi et al., 1999) for a spiral
actuator (h), and numerical results (Mohammadi et al., 1999)
for a straight actuator of the same length (s).

Figure 10. Through-thickness distributions of displacements, electric potential and electric displacement for a spiral actuator at
points A, B, C, and D using five SaS and 512332 mesh.
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Figure 11. Through-thickness distributions of stresses for a spiral actuator at points A, B, and C using five SaS and 512332 mesh.

Table 6. Geometry of spirals with a different number of turns.

Spiral with three turns Spiral with four turns Spiral with five turns

r0 (mm) a (mm) d (mm) r0 (mm) a (mm) d (mm) r0 (mm) a (mm) d (mm)

1.5 1.294 44.6 1.5 0.7011 34.8 1.5 0.4304 28.3
2.0 1.243 44.0 2.0 0.6618 34.1 2.0 0.3987 27.5
2.5 1.191 43.4 2.5 0.6223 33.3 2.5 0.3671 26.7
3.0 1.139 42.7 3.0 0.5829 32.6 3.0 0.3354 25.9
3.5 1.086 42.1 3.5 0.5433 31.8 3.5 0.3036 25.1
4.0 1.034 41.4 4.0 0.5038 31.1 4.0 0.2719 24.3
4.5 0.9816 40.8 4.5 0.4642 30.4 4.5 0.2402 23.5
5.0 0.9291 40.1 5.0 0.4246 29.6 5.0 0.2084 22.7
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6. Conclusions

The article presents a GeX hybrid-mixed four-node
piezoelectric solid-shell element based on the SaS for-
mulation in which displacements and electric potentials
of SaS are utilized as fundamental shell unknowns. The
SaS are located at Chebyshev polynomial nodes inside
the shell body that improve the behavior of higher-
order Lagrange interpolations. To implement the effi-
cient analytical integration throughout the element, the
extended ANS method for all components of the strain
tensor and electric field is employed. The feature of the
proposed GeX solid-shell element is that the element
stiffness matrices are evaluated without the use of
expensive numerical matrix inversion. The developed
solid-shell element exhibits excellent performance in the
case of coarse mesh configurations and can be recom-
mended for the 3D stress analysis of piezoelectric shells

Figure 12. Convergence study due to mesh refinement for a spiral actuator under an applied voltage of 200 V with five SaS using
4k3K2 meshes: the reference values are provided by a fine 512332 mesh.

Figure 13. Tangential tip displacement versus the number of
turns and the initial radius r0.
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of complicated geometry, in particular, for the model-
ing of spiral actuators.
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