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ABSTRACT

The exact geometry four-node solid-shell element formulation using the sampling surfaces (SaS)
method is developed. The SaS formulation is based on choosing inside the shell N not equally
spaced SaS parallel to the middle surface in order to introduce the displacements of these surfa-
ces as basic shell unknowns. Such choice of unknowns with the use of Lagrange basis polynomials
of degree N—1 in the through-thickness interpolations of displacements, strains, stresses and
material properties leads to a very compact form of the SaS shell formulation. The SaS are located
at Chebyshev polynomial nodes that make possible to minimize uniformly the error due to
Lagrange interpolation. To implement efficient 3D analytical integration, the extended assumed
natural strain method is employed. As a result, the proposed hybrid-mixed solid-shell element
exhibits a superior performance in the case of coarse meshes. To circumvent shear and membrane
locking, the assumed stress and strain approximations are utilized in the framework of the mixed
Hu-Washizu variational formulation. It can be recommended for the 3D stress analysis of thick and
thin doubly-curved functionally graded shells because the SaS formulation with only Chebyshev
polynomial nodes allows the obtaining of numerical solutions, which asymptotically approach the
3D solutions of elasticity as the number of SaS tends to infinity.
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1. Introduction

In recent years, a considerable work has been carried out on
continuum-based finite elements [1-8] that can handle the
analysis of shells satisfactorily. These elements are defined
by two layers of nodes at the bottom and top surfaces with
three translational degrees of freedom (DOF) per node and
known as 6-parameter solid-shell elements. However, the
6-parameter solid-shell formulation based on the complete
constitutive equations is deficient because thickness locking
occurs. This is due to the fact that the linear displacement
field in the thickness direction results in a constant trans-
verse normal strain, which in turn causes artificial stiffening
of the shell element in the case of nonvanishing Poisson’s
ratios. To prevent thickness locking, the 3D constitutive
equations have to be modified employing the generalized
plane stress conditions [1, 2, 6, 7]. The hybrid stress method
[4, 5] in which the transverse normal stress is constant
through the shell thickness and the enhanced assumed strain
(EAS) method in which the transverse normal strain is
enriched in the thickness direction by a linear term [3, 8]
are also utilized.

An effective way of using the 3D constitutive equations is
to employ the solid-shell element model with seven transla-
tional DOF [9-23]. The 7-parameter shell formulation is
based on choosing six displacements of the bottom and top

surfaces and the transverse displacement of the middle sur-
face as basic shell unknowns. Such formulation is optimal
with respect to the number of DOF. To circumvent locking
phenomena, the assumed natural strain (ANS) method
[9-12, 14, 15], the EAS method [10, 13] and the hybrid-
mixed method [13, 18-20] were efficiently applied. The
application to functionally graded (FG) shells can be found
in contributions [12, 17, 22].

The more general 9-parameter shell formulation is based
on introducing nine displacements of external and middle
surfaces as shell unknowns [24, 25]. Such choice of unknowns
with the consequent use of Lagrange polynomials of the
second order in through-thickness approximations of the dis-
placements and strains leads to a robust higher-order shell
formulation. Moreover, this model allows the derivation of
objective strain-displacement equations, which exactly repre-
sent rigid-body motions of the shell in any convected curvi-
linear coordinate system. Taking into account that the
displacement vectors of reference surfaces are resolved in the
middle surface basis, the higher-order shell formulation with
nine translational DOF is very promising for developing the
exact geometry or geometrically exact (GeX) solid-shell ele-
ments. The term GeX implies that the parametrization of the
middle surface is known a priori and, therefore, the coeffi-
cients of the first and second fundamental forms and
Christoffel symbols are taken exactly at element nodes.

CONTACT G. M. Kulikov @ gmkulikov@mail.ru @ Laboratory of Intelligent Materials and Structures, Tambov State Technical University, Sovetskaya, 106,

Tambov 392000, Russia.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

© 2018 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2018.1502380&domain=pdf
http://www.tandfonline.com/umcm
https://doi.org/10.1080/15376494.2018.1502380
http://www.tandfonline.com

It should be mentioned that 6- and 7-parameter shell ele-
ments without the use of some computational remedies (see
e.g., [23]) do not describe properly the transverse stresses in
shell structures. To solve the problem, the postprocessing stress
recovery technique has to be applied. Nevertheless, to evaluate
the through-thickness distribution of transverse stresses in
thick and thin shells the higher-order theories must be
adopted. The robust GeX shell elements based on the second-,
third- and fourth-order theories accounting for thickness
stretching for the analysis of laminated and FG structures have
been developed in [26-30]. These finite elements exhibit the
excellent performance and can be recommended for the 3D
stress analysis of shell structures. However, the authors [27]
report that the accurate shell elements based on the fourth-
order theory do not describe correctly the transverse normal
stress especially in the case of thin shells.

The present paper is intended to overcome the aforemen-
tioned difficulties and develop the higher-order solid-shell ele-
ments that make possible to evaluate all stress components
effectively for thick and thin shells. To solve such a problem,
the GeX four-node solid-shell element using the SaS concept
[31] is proposed. The SaS formulation is based on choosing
inside the shell body N SaS Q', Q?, ..., Q" parallel to the mid-
dle surface in order to introduce the displacement vectors
u',u?, ..., u) of these surfaces as basic shell unknowns, where
N > 3. Note that the 9-parameter shell model with three SaS
is a particular case of the general SaS formulation. Such
choice of unknowns with the use of Lagrange basis polyno-
mials of degree N—1 in the through-thickness interpolations
of displacements, strains and stresses leads to a very compact
form of the SaS shell formulation. Thus, we deal here with
the 3N-parameter shell formulation.

Recently, the SaS formulation has been employed to
develop the solid-shell elements for the 3D stress analysis of
plates and shells [32-34]. The proposed Sa$S solid-shell elem-
ent formulation is characterized by the following features
and new developments:

1. We introduce stresses of SaS instead of stress resultants
used in previous studies. This novelty allows one to rep-
resent the governing equations of the solid-shell element
formulation in terms of only Sa$S variables.

2. Here, the SaS shell formulation [33] is extended to the
FG materials. To solve this problem, the material
properties are interpolated through the thickness by
Lagrange polynomials [34]. Therefore, it does not mat-
ter what type of material laws in the thickness direction
is utilized. In fact, only the knowledge of the numerical
values of material properties on Sa$ is required.

3. All SaS are located at Chebyshev polynomial nodes, that
is, the roots of the Chebyshev polynomial of degree N.
Thus, the bottom and top surfaces are not included into
a set of SaS. This is important because the SaS formula-
tion with equally spaced SaS [32] does not work properly
with the Lagrange polynomials of high degree because of
the Runge’s phenomenon [35]. This phenomenon can
yield the oscillation at the edges of the interval when the
user deals with any specific functions similar to the
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metric functions appearing in strain-displacement equa-
tions of the SaS shell formulation (Eq. 6). Therefore, the
use of only Chebyshev polynomial nodes inside the shell
body can help to improve significantly the behavior of
the Lagrange polynomials of high degree because such
choice permits one to minimize uniformly the error due
to Lagrange interpolation [35]. This means that the
numerical solutions through the SaS shell formulation
asymptotically approach the 3D solutions of elasticity as
the number of Sa$ tends to infinity.

To prevent element locking, the hybrid-mixed method
pioneered by Pian [36] can be applied efficiently. There are
three types of hybrid-mixed finite elements in the literature,
namely, the hybrid stress elements [4, 5, 13, 37], hybrid
strain elements, [1, 2, 13, 19, 38] and hybrid stress-strain
elements [6, 7, 18, 20, 24, 25, 39]. These finite elements are
based respectively on the Hellinger-Reissner variational prin-
ciple with displacements and stresses as independent varia-
bles, the modified Hellinger-Reissner variational principle in
which the displacements and strains are used as primary
varjables and the Hu-Washizu variational principle depend-
ing upon displacements, strains and stresses.

The proposed GeX solid-shell element is based on the
hybrid stress-strain method and has computational advan-
tages compared to conventional isoparametric hybrid-mixed
finite elements. This is due to the fact that all element
matrices require only direct substitutions, that is, no expen-
sive numerical matrix inversion is needed. It is impossible
in the framework of isoparametric hybrid-mixed shell elem-
ent formulations. The important feature of the GeX solid-
shell element developed is the use of effective 3D analytical
integration by the extended ANS method [24, 40]. This
technique makes possible to utilize the coarse meshes and
has a great meaning for the numerical modeling of doubly-
curved shells with variable curvatures.

2. Three-dimensional description of shell

Consider a shell of the thickness k. Let the middle surface Q
be described by orthogonal curvilinear coordinates 0; and
0,, which are referred to the lines of principal curvatures of
its surface. The coordinate 05 is oriented along the unit vec-
tor e;(0;,6,) normal to the middle surface. Introduce the
following notations: e, (6, 8,) are the orthonormal base vec-
tors of the middle surface; A,(0,,0,) are the coefficients of
the first fundamental form; k,(6,,6,) are the principal cur-
vatures of the middle surface; ¢, = 1+ k,0; are the compo-
nents of the shifter tensor; c/(0;,0,) are the components of
the shifter tensor at SaS Q' depicted in Figure 1:

=, (0%) =1+ k,0%, (1)
where Hé are the transverse coordinates of SaS defined as
h 21—1
0L = —— ) 2
3 2cos <n N ) (2)

As can be seen, the SaS are located at Chebyshev polyno-
mial nodes (roots of the Chebyshev polynomial of degree N).
Here and in the following developments, the indices I,], K
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Figure 1. Geometry of the shell.

identify the belonging of any quantity to the SaS and run
from 1 to N; Latin indices i,j, k,I range from 1 to 3; Greek
indices o, § range from 1 to 2.

In the orthonormal basis e;, the strain-displacement equa-
tions [41] are written as

1, 1,
28aﬂ = 5/%41 +C_/Lﬂ<x7
o

1

2643 = C—i3a + Uy 3, €33 = U3 3, (3)
o

where u; and ¢; are the displacements and strains; the

symbol (...); stands for the partial derivatives with respect

to coordinates 0;; A;, are the strain parameters expressed in

terms of displacements as follows:

X 1
Age = A_“uoc,a + Bau[f + kyus, )Lﬁoc = A_x

A,p for B #a. (4)

u/}Va_Bocuzxv

A3y = u3,oc_kacum B, =

A, ALAp
The main idea of the SaS formulation [31] is to introduce
the displacements of Sa$S u!(0;,6,) as basic shell unknowns:

ul = u;(62). 5)

The strains of SaS 6{-]-(01702) can be also introduced for
convenience

1 1
Iy, [y _ I 1
26l = 2e,5(0}) = T+ 1 A
p o
1
265, = 26,3 (05) = B, + ?ﬂ“g“’ &5 = &3 (05) = Bs, (6)
o

Bl = uiz(03),

where B1(0;,0,) are the values of the derivative of displace-
ments with respect to thickness coordinate on SaS;
21.(0,,0,) are the strain parameters of Sa$ given by

) 1
A= 0,(00) = —ul + Bauf; + kytil,

oot A:x
1

21 e

Ay = 22 (05) = A*“f;,rBaui,
o

A= s (00) = ikt By = A, f

L= o (0) = kot B = g o f ()
o o

3. Displacement and strain distributions in
thickness direction

We start now with the first fundamental assumption of the
proposed higher-order shell theory. Let us assume that the
displacements are distributed through the thickness as

follows:
u; = E:Lluf7 (8)
i

where L!(6;) are the Lagrange basis polynomials of degree
N—1 defined as

0;—0,
L' = .y 9)
)

The use of Egs. (6) and (8) yields

Bi="Y M (0})u, (10)
]

where M! = L{S are the polynomials of degree N—2; their
values on SaS$ are

M (0}) = ! 00 for J#1
’ Oé - Og K;él,]oé - 0§ 7
M (0)) == M (65). (11)
JA

It is seen that the key functions | of the proposed
higher-order shell formulation are represented according to
Eq. (10) as a linear combination of displacements of Sa$ ).

Proposition 1. The functions /3}, f7 - ﬂf\’ are linearly
dependent, that is, there exist numbers oy, o, ..., ay, which
are not all zero, such that

Z OCI,Bf =0.

I

(12)

The proof of this statement can be found in [33].

The following step consists in a choice of the consistent
approximation of strains through the thickness of the shell.
It is apparent that the strain distribution should be chosen
similar to displacement distribution (Eq. 8), that is,

_ 1.1
&ij = E Lgij'

1

(13)

Proposition 2. Strain-displacement equations (6, 7, 10), and
(13) exactly represent rigid-body motions of a shell in any
convected curvilinear coordinate system.

The proof of this statement is presented in [42].

4, Hu-Washizu variational equation

To develop the hybrid stress-strain solid-shell element for-
mulation, we invoke the Hu-Washizu variational principle
in which displacements, strains and stresses are utilized as
independent variables:

OJuw =0, (14)



h/2

1
]HW:JJ J |:§ezjcijklekl_0ij(eij_8ij) A1Asc16,d0,d0,d0;—W,
Q —h2
(15)
W=“(CT G P =GPy ) ArArddOy+ Wy, (16)

Q

where o;; are the stresses; e;; are the displacement-independ-
ent strains; Cjy are the elastic constants of the material; u;
and u;" are the displacements of bottom and top surfaces
Q" and QF; ¢, and ¢, are the components of the shifter
tensor on outer surfaces; p; and p; are the tractions acting
on outer surfaces; Wy is the work done by external loads
applied to the edge surface X. As usual, the summation on
repeated Latin indices is implied.

According to the SaS technique, we introduce the last
three assumptions for stresses, displacement-independent
strains, and material properties choosing their through-
thickness distributions similar to distributions (8) and (13):

ojj = ZLIofj, (17)
T

ej = ZLIefj, (18)
T

Cipt = ) L'Cly, (19)
T

where afj = aij(ﬁg) are the stresses of SaS; efj = eij(ﬁg) are
the displacement-independent strains of SaS; ijkl = Cijkl((?g)
are the material properties of SaS.

Substituting through the thickness distributions (13,

17-19) in (15) and introducing the weighted coefficients

h/2 h/2
AUK = J LIL]LKC162d93,rU= J LIL]Clczd93, (20)
—h/2 —h/2

we can write the Hu-Washizu functional in terms of SaS
variables

Jaw = [ [ 22125 [ZK%AUK(CI)TC]CK — (") (¢ — 8’)]
A1A,d0,dO,—W,
(21)
where

I

I _ [ I A o0 o017 I
€ = [511522 £33 261, 265 2323] )

e =

I 1 I A0 o0 o117
[ell €, €33 2e; 2¢ey; 2923] )

¢ = [6{1 T 033 015 013 053]Ta (22)
Ciii Chas Clis Chyy 0 0
Coon Chayy Chys Ch 0 0
- Con Chz Chsps Ch 0 0
Clan Chyn Clhss Chp 0 0
0 0 0 0 Clys Clas
| 0 0 0 0 Chys Oy i
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5. ANS four-node solid-shell element

The finite element formulation is based on the simple inter-
polation of the shell via GeX four-node solid-shell elements

I_ i
up = E Ny,
r

(1 + nlril)(l =+ anéZ)v

(23)

N, = (24)

o

lforr=1,4

- 1forr=1,2
"7 =1 forr=2,3"

”2r={_1 for r = 3,4’

where N,(£,,&,) are the bilinear shape functions of the
element; u! are the displacements of SaS at element nodes;
¢, = (0, —d,)/t, are the normalized curvilinear coordinates
(Figure 2); 2¢, are the lengths of the element in
(61, 0,)-space; the nodal index r runs from 1 to 4.

To implement the efficient analytical integration through-
out the finite element, the extended ANS method [40] is uti-
lized to interpolate the displacement-dependent strains

81 = ZN"SL ££ = [S{Ir 8521’ 8§3r 28{21’ 28{3r 28£3r:|T7 (25)
-
where ¢, are the strains of Sa$ at element nodes.

The main idea of such approach can be traced back to
the ANS method developed by many scientists (see e.g.
[43-45]) to cure the isoparametric finite elements from
shear and membrane locking. In contrast to the conven-
tional formulation, we treat the term ANS in a broader
sense. In the GeX four-node solid-shell element formulation,
the displacement-dependent strains of SaS are assumed
to vary bilinearly throughout the biunit square in (&,
&,)-space. The extended ANS method (25) makes it possible
to utilize the element nodes as sampling points that helps to
avoid the use of Gauss numerical integration.

e

Q2
~ ~ 0:] 2€| )
Pretl octitad, g —t

el dyf-- ___.,Qel 245
-1 1 g, :> R : v
P b B (:1 [;4

1 1

[zr(el, 0,)

Figure 2. Biunit square in (&;,&;)-space mapped into the middle surface of
the GeX solid-shell element in (x1, x2, X3 )-space.
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Remark 1. In order to circumvent curvature thickness locking
for the isoparametric four-node solid-shell element, Betsch and
Stein [46] proposed to utilize the bilinear interpolation (25) for
the transverse normal strain. It is apparent that curvature thick-
ness locking is not related to the GeX four-node solid-shell
element because it can handle the arbitrary geometry of surfaces
properly. We advocate the use of the extended ANS method
(25) for all components of the strain tensor to implement the
effective analytical integration throughout the element.
The strains of Sa$ at element nodes can be expressed as

(26)
where B! are the constant strain-displacement matrices of
order 6 x 12N presented in Appendix A; q is the element
displacement vector given by

8 - qua

2 2

T T T T _[1,1,1. 2
] 9= [ulrquu37u17u27u3r

9= [q/9,q3q;

For further developments it is convenient to rewrite the
ANS interpolation (25) in the following form:

N, N, N1T
ulru27u3r]

(27)

T=) (@) (&), (28)
1,12
I 1
Srlrz = Brlrzq’ (29)
where
I I I I I I I T
srlrz = |:811r1r2822r1r2833r1r22812r1r22813r1r22823r1r2:| ’
1 1
I I I I I I I I I I
By, :Z(Bl + B, + B; +B4),B01 :Z(Bl + B, — B; —B4),
1 1
I I I 1 I I I I I I
B :Z(Bl - B, -B; +B4)’B11 :Z(Bl - B, +B; _B4)-

(30)
Here and below, the indices r; and r, run from 0 to 1.

6. Hybrid stress-strain solid-shell element formulation

To circumvent shear and membrane locking and obtain no
spurious zero energy modes, the robust stress interpolation
[24] is utilized

GI: Z (fl)rl(éz)errlfzcim’ (31)
ri4r<2
I I 1 I I 11 I 1.1 117
Goo = [(Pl(Pz(P3(P4(/75(P6] y O = [?7@9@011] )
°'1o [QDSQDIOQDIZ} )
where Q,,,, are the projective matrices defined as
(1 0 0 0 0 0 1 00
01 0 0 0 O 0 0 O
0 01 0 0 O 0 1 0
Qo=1o 0010 0['W=1]0 0 ol
00 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 O
= 32
0 0 0 (32)
1 0 O
01 0
Q10: 0 0 0
0 0 0
0 0 1

The similar interpolation can be used for displacement-
independent strains, that is,

¢ = D (&)"(&)"Qnel,,

r+n<2
el = [} i wh vl vt el
elO [‘ps l//10 ‘//12} .

Substituting interpolations (23, 28, 31), and (33) into the
Hu-Washizu variational principle (14) and (21) and replac-
ing the metric product A;A; in surface integrals by its value
at the element center, one can integrate analytically through-
out the finite element. As a result, the following equilibrium
equations of the GeX hybrid-mixed solid-shell element are
obtained:

(33)

eb = [Wh v vl

Z r’ (eim B QE;?‘ZB{'H‘Zq) =0 for rn+n< 2, (34)
J

Z (FU i1’2 - ZAUKQ;[;rz ]Q7172e£<1n> =0 for 4! + [p) <27
J K
35)
Sy Y L, ) e, -k 6o
I J

r1+r; <2

where F is the surface traction vector.
Owing to Proposition Bl in Appendix B, Eq. (34) can be
simplified
—Q! B!

mz nBr,q=0 for r+r<2. (37)

Because of interpolations (31) and (33) the stresses and
displacement-independent strains are discontinuous at the
element boundaries. Hence the vectors G£1 ,, and eﬁm can be

eliminated from Egs. (35-37) that leads to finite element

equations
Kq =F, (38)

where K is the element stiffness matrix of order 12N x 12N
given by

ri+ry<2

! B! ! T o BK
3ntn nr Q”lszrlrz ererylrz nr

(39)

It is worth noting that the element stiffness matrix (39) is
evaluated without expensive numerical matrix inversion that
is impossible with conventional isoparametric hybrid-mixed
solid-shell elements. Furthermore, the stiffness matrix is cal-
culated by using analytical integration throughout the elem-
ent. Thus, the GeX hybrid stress-strain solid-shell element
developed is economical and efficient because it additionally
permits the use of coarse meshes as demonstrated in bench-
marks considered in Section 8.

7. Assessment of rank of element stiffness matrix

The stress and displacement-independent strain interpola-
tions have to be selected such that the four-node solid-shell
element would be free of shear and membrane locking and



they must be as simple as possible. Due to the strain inter-
polation (33), we introduce 12 assumed strain parameters
1//{, npé, vy lp’n for each SaS, that is, 12N for all SaS. It seems
to be excessive for the SaS solid-shell element with 12N dis-
placement DOF. However, there exist six dependent strain
modes exactly, which provide a correct rank of the element
stiffness matrix. This statement has been proved analytically
[47] for the SaS hybrid-mixed quadrilateral plate element.
Concerning the GeX four-node solid-shell element it is
still possible to describe three dependent strain modes
because there is a link between displacement-dependent and
displacement-independent strains of SaS
efm = Qfmaﬁm for r +r<2, (40)
which follows directly from Egs. (29) and (37). Using nota-
tions (30, 32), and (33), one obtains
Vo = e3301, (41)

I I
Y3 = €300 Yo = E3310-

According to Proposition 1 and strain-displacement equa-
tions (6) there exist numbers oy, o5, ..., &y such that

E oqs§3 =0.
I

(42)

15 \ T
N=3

10 - a=1 ”nn”‘”““
g xnux““"g;
o}
on
E,

= 0 7
o
2

S .

T A
10 | 1 L ! |

0 6 12 18 24 30 36
Eigenvalue number

Figure 3. Eigenvalues of the square plate element with a = 1 and h = 0.1.
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The use of Egs. (28), (41), and (42) yields the first three
dependent strain modes

Doy =0, > s =0, > i, =0.
I I I

(43)

The other three dependent strain modes cannot be
obtained analytically; only numeric calculations make pos-
sible to evaluate the eigenvalue problem. Therefore, we con-
sider a few shell elements frequently used in applications:
square plate, cylindrical shell, spherical shell and hyper-
bolic shell elements made of nonhomogeneous material with
v =0.3 and

E=E "0Fh2)  _p/2 <0y, <h/2, (44)
where E~ = 107 is the Young modulus on the bottom sur-
face; o is the material gradient index. The results of calcu-
lating eigenvalues with three and five SaS are shown in
Figures 3-6. It is seen that six zero eigenvalues are clearly
observed for homogeneous and nonhomogeneous shells
but the results for the hyperbolic shell are better using
more SaS.

15 | |
N=5

10 I “I‘ua‘“l“uiiﬁil
’qg ui{uﬁuiil;;udzxz
s L .
5) o
o0 —
L
= 0
on
2

- Lon¥

-10 | | | | |

0 o @@ %3¢ & &l &0
Eigenvalue number
15 | |
N=5

10 I ﬁiiuu“ﬁil
—_ =] ““‘“““““in ol
E né'-iiﬂir“xiinu pl
< s L ;
g .
.20 —
L
= 0
on
£

-5+ )

e
-10 | | | | |

0 10 20 30 40 50 60
Eigenvalue number

Figure 4. Eigenvalues of the cylindrical shell element (L/4 < 6; < L/2,7/8 < 0, < =/4) depicted in Figure 10 with L =R =1and h =0.1.
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Figure 5. Eigenvalues of the spherical shell element (n/4 < 0; < 37/8,0 < 0, < n/4) depicted in Figure 12 with R =1, 0o =0 and h = 0.1.
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Figure 6. Eigenvalues of the hyperbolic shell element (L/4 < 6, < L/2,7/8 < 6, < ©/4) depicted in Figure 15with L =R=1,r =0.5and h =0.1.

8. Numerical examples

The performance of the GeX hybrid-mixed four-node
solid-shell element denoted by the GeXSaS4 element is eval-
uated with 3D exact solutions of elasticity considered in
Sections 8.1 and 8.3. The pinched cylindrical shell with rigid
diaphragms and the pinched FG hyperbolic shell are also
considered as benchmarks.

8.1. Simply supported composite cylindrical shell under
sinusoidal loading

First, we study a simply supported cylindrical shell with
dimensions of L/R =4 subjected to sinusoidal loading dis-
tributed on the bottom surface

70
P; = —posin Tlcos 40,,

where L and R are the length and radius of a shell; 0; and 0, are
the axial and circumferential coordinates of the middle surface.
The shell is made of the unidirectional composite with the fibers
oriented in the circumferential direction. The mechanical prop-
erties are taken to be Ey = 25Et, Gyr = 0.5Et, Grr = 0.2ErT,

Ot 1
0, Symmetry 3 0
e G
S
(4 Q+
R Symmetry
o
/4 — .70
P; ——posmL—‘cos463

Figure 7. One sixteenth of the simply supported composite cylindrical shell
under sinusoidal loading modeled by regular 4n x 4n meshes with n=1, 2, 4,
8,12 and 16.

Er = 10%, vir = vpr = 0.25, where subscripts L and T refer to
the fiber and transverse directions of the composite.

Owing to symmetry of the problem, only one sixteenth of
the shell depicted in Figure 7 is discretized by regular
meshes of GeXSaS4 elements. To compare the derived



results with the exact solution of elasticity [48], we introduce
the following dimensionless variables at crucial points as
functions of the dimensionless thickness coordinate:

i1,(z) = 10Ey H*u;(0,0,z)/R°po,
il3(z) = 10EL W*uy(L/2,7/8,z)/R’po,
ii3(z) = 10EL Wu3(L/2,0,z)/R*py,
G11(z) = 100h*611(L/2,0,z)/R*py,
G1,(z) = 10K, (L/2,0,2)/R*po, (45)

013(2) = 100]’10’13(0,O,Z)/Rpo7
03(2) = 10h0’23(L/27TE/8,Z)/Rp0,
633(2) = 633(L/2,0,z)/p0,z = 63/]’1,

where po =1 and R = 1.

Table 1 lists the results of the convergence study due to
increasing the number of SaS for a moderately thick cylindrical
shell using the 64 x 64 mesh. A comparison with the
Varadan-Bhaskar exact solution [48] is also presented. It is
seen that the GeXSaS4 element provides three or four right dig-
its for displacements and stresses since seven SaS located at
Chebyshev polynomial nodes. Figure 8 shows the distributions
of dimensionless variables (45) through the thickness of the
shell for different values of the slenderness ratio R/h using nine
SaS and the same mesh. These results demonstrate convincingly
the high potential of the GeXSaS4 element because the bound-
ary conditions on bottom and top surfaces for transverse
stresses are satisfied correctly. Figure 9 displays the results of
the convergence study due to mesh refinement through nor-
malized displacements and stresses for different slenderness
ratios choosing nine SaS and regular 4n x 4n meshes. The ref-
erence values are provided by authors’ exact SaS solution [31].
As can be seen, the GeXSaS4 element behaves well in the case
of coarse meshes even for the transverse normal stress.

(2)
(2)
alz(z) = 100h*51,(0,7/8,z)/R*po,
(2)
(2)

8.2. Pinched cylindrical shell with rigid diaphragms

To illustrate the capability of the GeXSaS4 element to over-
come shear and membrane locking phenomena (shear lock-
ing is much greater than membrane locking [49]) and to
compare it with high performance isoparametric four-node
shell elements [50-52], we study one of the most demanding
tests. Consider a short cylindrical shell supported by two
rigid diaphragms at the ends and loaded by two opposite
concentrated loads at its middle section.

Due to symmetry of the problem, only one octant of the
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shows the transverse displacement at the point A and the com-
parison with [50-52] is also given. The analytical answer of the
classic shell theory is —1.8248 x 107> [52]. The use of five Sa$
and a fine mesh 128 x 128 yields —1.845 x 107°. A slightly
less value of —1.844 x 10" is obtained by using the eight-node
brick element Solid45 [53] with four elements in the thickness
direction that corresponds to the choice of five SaS. It is seen
that the GeXSaS4 shell element is the best performer, whereas
the other elements are too stiff in the case of coarse meshes.

For the further analysis it is convenient to introduce the
dimensionless variables at any point P(0;,0,) belonging to
the middle surface as follows:

(P, z) = 100EW*u, (P, z)/RF,

u3(P, z) = El*us(P, z) /RF,

()'11(P72) = 100]’120'11(1),2)/1:,

022( 5 ) = 100h2022(P,Z)/F,

2(P7 ) = 100h2612(P,z)/F,

013(1:’7 Z) = 100Rh0’13(P, Z)/F,
023(P,Z) = 100Rh0’23(P,Z)/F,
033(1)72) = 100Rh0’33(P,Z)/F,Z = 03/”1

(46)

Table 3 lists the results of the convergence study due to
increasing the number of SaS by means of dimensionless
variables (46) at points B and C using the 64 x 64 mesh.
Figure 11 displays the through-thickness distributions of
stresses for different slenderness ratios R/h choosing seven
SaS inside the shell. The results are compared with the
Solid45 element [53] using the same fine mesh and six ele-
ments in the thickness direction that corresponds to a
chosen number of SaS. One can see that the Solid45 element
leads to a poor prediction for the transverse stresses. It
should be noted that it is impossible to satisfy the boundary
conditions on bottom and top surfaces by choosing 12 and
even 16 elements in the thickness direction.

8.3. Pressurized nonhomogeneous spherical shell

Next, we consider a nonhomogeneous spherical shell sub-
jected to uniform pressure p, acting on the inner surface.
Owing to symmetry, one sixteenth of the shell is discretized
by regular 4n x 1 meshes shown in Figure 12. The coeffi-
cients of the first and second fundamental forms and
Christoffel symbols of the spherical surface with a hole at
the top are given by

Ay =R, A, =Rsin0 ki =1/R, ky,=1/R,Bi=0
shell is modeled by regular meshes of GeXSaS4 elements ro ok =1/R ke =1/R, By =0,
depicted in Figure 10. The shell parameters are taken to be _ o 0 0, € [0,7/2]. (47)
R =300, L =300, E=3x10% v =0.3 and F = 1. Table 2 Rsin 0,

Table 1. Convergence study for a composite cylindrical shell with R/h = 10 using 64 x 64 mesh.

1(0.5) U(—0.5) u3(0) G11(0.5) G2,(0.5) G12(—0.5) G13(0) 523(0) G33(0)
N=3 —0.7668 —3.098 0.8536 0.4571 3.584 —0.3696 0.3369 —2.523 —1.091
N=5 —0.8213 —3.392 0.9186 0.6521 4.046 —0.4118 0.5217 —-3.714 —1.388
N=7 —0.8215 —3.393 0.9188 0.6626 4.049 —0.4119 0.5198 —3.666 —1.371
N=9 —0.8215 —3.393 0.9188 0.6628 4.049 —0.4119 0.5198 —3.667 —-1.371
[48] - - 0.9189 0.663 4.051 —0.412 0.520 —3.669 -1.37
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Figure 8. Through-thickness distributions of displacements and stresses for a composite cylindrical shell with N = 9 using 64 x 64 mesh; GeXSaS4 element (—),

exact SaS solution [31] (o) and Varadan—Bhaskar exact solution [48] (7).

It is assumed that the Young modulus is distributed through
the shell thickness according to the exponential law (44) with
E~ =107, whereas Poisson’s ratio v =0.3. The geometric
parameters of the shell are R = 1 and 0, = 7/18000. To analyze
the results efficiently, we introduce the dimensionless variables as
functions of the dimensionless thickness coordinate as follows:

i13(z) = 10Ehus(n/2,0,z)/R*po,
611(2) = 10]’10’11(7{/2,072)/1'21)07
633(2) = 0'33(7'5/2,0, Z)/p(),Z = 93/”1,

(48)

where

p():l.

Table 4 lists the results of the convergence study due to
increasing the number of Sa$ for a very thick spherical shell
using a fine 128 X 1 mesh. A comparison with the exact
Lamé’s solution for the homogeneous spherical shell [54] is
also given. As it turned out, the GeXSaS4 element provides
already four right digits for the displacement and stresses
starting respectively from five and nine SaS. Figure 13
shows the through-thickness distributions of stresses for
different values of the material gradient index « choosing
seven SaS and 64 x 1 mesh. One can see that the boundary
conditions on inner and outer surfaces for the transverse
normal stress are satisfied again correctly with a high
accuracy. The results of the convergence study due to mesh
refinement through the normalized transverse displacement
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Figure 9. Convergence study due to mesh refinement for a composite cylindrical shell with N = 9 by using regular 4n x 4n meshes with n =1,2,4,8,12 and 16;
reference values are provided by the exact SaS solution [31] choosing nine SaS.
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Figure 10. One octant of the pinched cylindrical shell modeled by regular 4n x 4n meshes with n = 1,2.4,8,16 and 32.
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Table 2. Convergence study for a pinched cylindrical shell with R/h = 100 using the transverse displacement 10° x u3(A, 0).

Solid45 [53] Solid45 [53]
Mesh 3 SaS 5 SaS 2 elements 4 elements [50] [51] [52]
4 x4 —1.555 —1.555 — — —0.681 —0.856 —0.728
8x8 —1.673 —1.674 —0.738 —0.738 —1.363 —1.443 —1.392
16 X 16 —1.779 —1.780 —1.520 —1.519 —1.706 —1.726 —1.706
32 x32 —1.821 —1.823 —1.774 —1.774 — — —
64 x 64 —1.837 —1.839 —1.830 —1.831 — — —
128 x 128 —1.843 —1.845 —1.843 —1.844 — — —

Table 3. Convergence study for a pinched cylindrical shell with R/h = 100 using 64 x 64 mesh.

uq(B,0) u3(B,0) a11(B,0.5) G2(B,0.5) 712(B,0.5) a13(B,0) G3(B,0) 733(C,0)
1.321 0.1362 2.545 —0.3242 —0.7405 0.5261 —3.920 0.0989
1321 0.1362 2.544 —0.3256 —0.7405 0.7335 —5.470 0.3924

1321 0.1362 2.544 —0.3254 —0.7405 0.7334 —5.475 0.3932
1321 0.1362 2.544 —0.3252 —0.7405 0.7333 —5.475 0.3928

==z=z=
I

(o) NV, N~ V)

0.5 ; 0.5 5

0.25 - =

R/h=4 10 100

100 _

Thickness coordinate z
o
T
I
Thickness coordinate z

525 0 25 5 .16 8 0 8
Stress (B, z) Stress 65, (B, z2)

0.5 T 7 0.5 T i

N N
o 0.25 1 @ 025 =
< <
£ £
2 =
o) o 10
S o0 4 8 oF i
12} 2]
& 9
- S
2 3
= -0.25 1 £-025 - —
-0.5 -0.5 &
-18 6 -8 -6 -4 -2 0 2
Stress 6,3(B,z2)
0.5 0.5
N N
o 0.25 -4 2 025 .
[+ <
.5 R
2 2
g g
Q 0 — o 0 -
§ 3
2 3
= -0.25 1 £-025 _
-0.5 -0.5
6 S5 004 30 20 - 0 1
Stress 6,3 (B, 2) Stress 633(C,2)

Figure 11. Through-thickness distributions of stresses for a pinched cylindrical shell with N = 7 using 64 x 64 mesh; GeXSaS4 element (—) and Solid45 element
[53] with six elements in the thickness direction for R/h = 4 (A), R/h = 10 (0) and R/h = 100 (o).
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Figure 12. One sixteenth of the nonhomogeneous spherical shell modeled by regular 4n x 1 meshes with n = 1,2,4,8,12,16 and 32.

Table 4. Convergence study for homogeneous and nonhomogeneous spherical shells with R/h = 2 using 128 x 1 mesh.

a=20 a=1
u3(0) G11(—0.5) 511(0.5) a33(0) u3(0) a11(—0.5) a11(0.5) a33(0)
N=3 2.287 5.249 2.489 —0.3783 1.456 3.402 4.137 —0.5187
N=5 2.300 4.609 2.090 —0.2575 1.449 2.470 3.557 —0.3363
N=7 2.300 4.568 2.067 —0.2628 1.450 2.403 3.512 —0.3458
N=9 2.300 4.566 2.066 —0.2626 1.450 2.400 3.510 —0.3455
[54] 2.300 4.566 2.066 —0.2626 - - - -
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Figure 13. Through-thickness distributions of stresses for a spherical shell with N = 7 using 64 x 1 mesh; GeXSaS4 element (—) and Lamé’s exact solution [54] (o).

and stresses for the same number of SaS are presented in
Figure 14. The reference values are provided by Lamé’s
exact solution. As can be seen, the developed GeXSaS4 mal stress.

solid-shell element behaves well even for very thin shells in
the case of coarse meshes except for the transverse nor-
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Figure 15. One octant of the pinched hyperbolic shell modeled by regular 4n x 4n meshes with n = 1,2, 4,8 and 16.

8.4. Pinched FG hyperbolic shell

Finally, we study a FG hyperbolic shell under two pairs of
opposite forces. The shell parameters are chosen to be
r=7.5 R=15 L =20, h=0.1 and F = 4. This problem is
a good benchmark to test the proposed analytical integration
schemes because we deal here with a doubly-curved shell
with variable coefficients of the first and second

fundamental forms of the middle surface (parameters p and
7 are given in Figure 15):

207 r? 1
A= 1+7, Ay =p, klzprA?’ 2:E;
‘EQ]
By =0,B,=——,0, €[0,L]. 49
1 y D2 pZAl, 1 [7 ] ( )



It is assumed that the shell is fabricated by mixing the
metal and ceramic phases. For evaluating the effective
material properties through the thickness of a two-phase
shell, the Mori-Tanaka method [55, 56] is adopted

K=K + Vc(Kc_Km)
" 14V, (Ke—Kn)/(Kn + 4Gy, /3)’
Vc Gc_Gm
G=Gm+ ( )

1+ Vm(Gc_Gm)/(Gm +fm) ’
Gm(9K;, + 8Gp)

fa 6(Km + 2Gp)

Ky=—om p—
T3 =2, 3(1—2v,)]
Gnm _ B o E

T2l 4w 201+
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where E,, and E. are the Young moduli of metal and cer-
amic phases; vy, and v, are the Poisson’s ratios; G, and G
are the shear moduli; K, and K. are the bulk moduli; V,,
and V_ are the volume fractions defined as

Vm=1-Vo, Ve=V_ +(VI=V.)(0.5+2)" z=0s/h,

(51)

where V_ and V[ are the volume fractions of the ceramic
phase on the bottom and top surfaces; o is the material gra-
dient index. The metal phase is taken to be aluminum with
the material properties E, = 7 X 10'° Pa and vy, = 0.3; the
material properties of the ceramic are E. = 4.27 x 10''Pa
and v, = 0.17. The calculations were performed for V. =0
and o = 2 choosing two values of the volume fraction of the
ceramic phase on the top surface VI =0 and 0.8. It is

Table 5. Convergence study for pinched homogeneous and FG hyperbolic shells using the displacement i, = 10° x u, at points A and C.

Vi =0 V=08
Mesh
N=3 N=5 N=3 N=5 N=7
—Ux(A) Uy (C) —Ux(A) Ux(C) —Ux(A) Ux(C) —Ux(A) ux(Q) —Ux(A) ux(Q)
4 x4 1.555 1.776 1.555 1.776 0.983 1.124 0.967 1.106 0.968 1.107
8x8 1.683 1.703 1.683 1.703 1.063 1.077 1.046 1.060 1.047 1.060
16 x 16 1.720 1.684 1.721 1.684 1.087 1.065 1.069 1.048 1.070 1.048
32 x 32 1.731 1.680 1.731 1.680 1.093 1.062 1.076 1.045 1.077 1.046
64 x 64 1.734 1.679 1.734 1.679 1.095 1.061 1.078 1.044 1.079 1.045
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Figure 16. Through-thickness distributions of stresses for a pinched hyperbolic shell with V.= = 0 using 64 x 64 mesh.
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Figure 17. Through-thickness distributions of stresses for a pinched hyperbolic shell with V" = 0.8 using 64 x 64 mesh.

apparent that the first value corresponds to the homoge-
neous hyperbolic shell.

Due to symmetry of the problem, only one octant of the
shell is discretized by regular meshes depicted in Figure 15.
Table 5 shows the displacements of the middle surface at
points A and C for a different number of SaS and meshes.
Figures 16 and 17 present the through-thickness distribu-
tions of stresses at point E(L/4,7/8) belonging to the mid-
dle surface. As can be seen, the use of the 9-parameter shell
model [24] based on the quadratic polynomial interpolation
of displacements in the thickness direction that corresponds
to the choice of three SaS yields a poor prediction for the
transverse stresses. To satisfy the boundary conditions on
bottom and top surfaces for these stress components with a

high accuracy, we have to employ more SaS. Actually, five
and seven SaS must be taken to describe correctly the trans-
verse stress distributions in homogeneous and FG hyperbolic
shells, respectively.

9. Conclusions

This paper presents the GeX hybrid-mixed ANS four-node
solid-shell elements based on the SaS concept in which the
displacements of SaS are utilized as fundamental shell
unknowns. All SaS are located at Chebyshev polynomial
nodes inside the shell that allows one to minimize uniformly
the error caused by using the high order Lagrange interpola-
tions for displacements, strains, stresses, and material



properties through the thickness. The element stiffness
matrix of the FG shell is evaluated by means of 3D analyt-
ical integration with no expensive matrix inversion that is
impossible with existing isoparametric hybrid-mixed solid-
shell elements. The GeXSaS4 solid-shell element developed
passes the zero energy mode test and 3D membrane and
bending patch tests [47], and exhibits a superior perform-
ance in the case of coarse mesh configurations in all consid-
ered benchmarks. It can be recommended for the 3D stress
analysis of thick and thin FG shell structures due to the fact
that the SaS solutions asymptotically approach the 3D solu-
tions of elasticity as the number of SaS tends to infinity.
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Appendix A

According to Egs. (7), (10), (23), (24), and (27) the nodal strain param-
eters of SaS can be written as

)“1{17 = (E{m)TqTBI(r = (Ef3r)Tq7

are the constant inside the element vectors of order 12N

(AD)

where =L

ijr

given by

(Efm) i+3(I-1)43N(s—1) — s, (E'{Sr)H}(]—l)JrSN(s—l) =5, M (9’;) )

=] =
(:mr)ﬂ+3(1—l)+3N(s—l) = 0By, (%/fr) B43-1)13N(s1) = =0 By, for fF 0,
=I =1 =—
(:m)3+3(1—1>+3N(s—1) = Orkas, (_3xr)oc+3(1—l)+3N(s—l) = Ok,
1
Aors = 40A,, nas(l + ”[)’r”/}s) for B#a,
(A2)

where A,,, kyr, and B,, are the nodal values of the geometric parame-
ters of the middle surface; J,; is the Kronecker delta. The parameters
ny are defined by Eq. (24) and, as we remember, the indices
i,j=1,2,3; o,f=1,2; r,s=1,2,3,4; I,]=1,2,...,N. The remaining com-
ponents of vectors not written out are zero.

Using Egs. (6), (25), (26), and (Al), we arrive at the explicit form
of the strain-displacement matrices introduced in Section 5:

(C{r - (E'{lr)T

=
I

; (A3)

(Cér)71 (EQZY)T + (E;Z’vr)T

where ¢!, =1+ k,,0} are the nodal values of the shifter tensor on SaS.

Appendix B
Here, we study the matrix of weighted coefficients from Eq. (20).

Proposition Bl. The determinant of the matrix I' = [["’] is not
equal to zero.

Proof. Introduce any vector v = [v1vs...vn]" and consider a quadratic
form

h/2 /2
vily = Z ZFU‘V[V] = Z ZVIV/ J L' ¢ic,d0; = J gzclczd63,
L L 2 2
(B1)
where
g(0:) => L' (B2)

I

Because of ¢, >0 the quadratic form v'I'v is positive definite and,
therefore, det I' >0 .
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