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Grigolyuk and Kogan [i] shed light on the status of the theory of multilayer shells. 
The simplest alternate scheme of geometrically anisotropic multilayer shells is expounded 
upon here on the basis of a Timoshenko-type shear model. A rather complete list of studies 
performed in this area can be found in [2-5]. Let us point up a number of new publications 
[6-12], which shed light on isotropic and anisotropic, linear and nonlinear, and homogeneous 
and heterogeneous shells. It is apparent from this review that Timoshenko's hypothesis has 
been widely expanded upon in shell theory. In light of these factors, studies have brought 
about the development of variants to the Timoshenko-type theory. 

The simplest nonlinear variant of the theory of homogeneous shells in quadratic approxi- 
mation was first proposed by Marguerre [13]. Grigolyuk and Mamai [14] shed light on certain 
generalizations of Marguemre's theory of noninclined shells. 

Basic attention was focused on study of the effect of anisotropy in multilayer shells 
of revolution. As compared with the universally adopted approach, the principal difference 
lies in the statement and method of solution of axisymmetric problems of nonlinear anisotropic 
laminar shells. The principal characteristic of the problem under consideration is the fact 
that the twisting moment, torsion of the initial surface of the shell, and other quantities 
characterizing the stress--strain state of the design are not zero. It should be noted that 
the problems under analysis have also been previously exposed within the framework of the 
linear theory [15-20]. 

In recent years, shells fashioned from orthotropic materials oriented so that the prin- 
cipal elastic stresses do not coincide with the directions of coordinate lines have come into 
widespread use in engineering. Shells of revolution made of an even number of antisymmetric- 
ally positioned anisotropic layers are investigated below. If the number of layers in the 
shell is sufficiently high, it is not essential to consider anisotropy. This result is well 
known and has been repeatedly noted in the literature, e.g., by Teters et al. [21] and Brewer 
[22]. In the opposite case, the effect of anisotropy should not be disregarded. 

The ultimate purpose of the Study was the development of an effective numerical algorithm 
for determination of the stress--strain state of anisotropic multilayer shells of revolution. 
The process of successive approximations, which was based on Newton's modified method [23], 
was employed for numerical solution of a solving system of nonlinear ordinary tenth-order dif- 
ferential equations. A linearized system of differential equations is integrated numerically 
by the orthogonal-sweep method, which is stable in the given class of problems. 

i. Let us examine a thin multilayer shell comprised of N anisotropic layers. Let us 
select the inner surface of any k-th layer beyond the reference surface ~, or the contact 
surface of layers, which can be assigned curvilinear orthogonal coordinates ~, ~2. Let the 
coordinate z be read off in the direction of an increase in the external normal to the initial 
surface. The reduction in shell thickness is disregarded. 

Let us introduce the necessary designations: h~ total thickness of the shell, hk, thick- 
ness of the k-th layer; ~k, distance from the initial surface to the upper boundary of the k- 
th layer; Ai, Lam~'s parameters; ki, curvatures of the coordinate lines; u i and w, tangential 
displacements and normal displacement, respectively, of points on the initial surface; u~, 
tangential displacements of points on the k-th layer; ~i and ~i, functions characterizing 
transverse shear; q, normal load. Here and hereafter, i = i, 2 and k = i, 2, ..., N. 

According to Timoshenko's kinematic hypothesis for an entire multilayer package, we have 
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For the tangential stresses, we can take advantage of the independent approximation 

a~3 h = ~i[ (z). (1.1) 

Here f(z) is, a priori, a given function, which is continuous and satisfies the conditions 
f(~N) = f(~o) = 0. The independent approximation of tangential stresses introduces only a 
formal contraction in Timoshenko-type theory, since the elasticity relationships used for 
them are integrated with respect to the thickness of the package. In Eq. (l.l), the terms 
i + kiz are mising in the denominator [24]. If, however, we consider the assumption made 
concerning the thinness of the shell walls, it is completely admissible to neglect the quan- 
tities kiz as compared to unity, the retention of which does not increase the accuracy of the 
final result. Thus, let us proceed to the next statement. 

Let us now turn to nonlinear strain relationships [25]. In the case of the simplest 
nonlinear variant of the theory of laminar shells in quadratic approximation for small elonga- 
tions and displacements, expressions defining the tensor of k-th-layer strains will take the 
form 

l 
s~=E~+zK~;  ~12~=El~+zK12; ~s~=~-0~;  ~ = 0 ;  E~=~+-~-0fl ;  

E~2=o+0102; K~i=• Km=~l+kio l+~+klob  (1.2) 
where 

expressions 

1 dw 
Ol=ktul ; o=0h +c02; 

A, ac~l 
1 Oul 1 OA1 1 (~'~]1 1 OA 1 

Sl----A, On1 L AIA2 0a~ Ul+klw; • = AI e~a~ ~ A,A~ On2 ~2; 

1 ~u2 1 

(1.3) 

1 OAt 1 0[32 OA1 [~1 (1 ~ 2 ) .  
col Al Oal A~A2 c]a~ ul; ~l A10al A1A2 bczg_ 

Let us i n t r o d u c e  s p e c i f i c  f o r c e s  and moments in the  laminar  s h e l l  in  accordance  wi th  the  

N O h N 6 k 

T , :  Z I "i'h( l+klz)dz; TI2 = Z ~ omh(l+k2z)dz; 
b.=i 6h_ ~ /~=1 6k_ 1 

N 0 k N 6~ 

~=1 6k_ l h = l  6h_ 1 

N 6 k 

/{=1 6~_ l 

in this case, the identity 

Tm--k2M21 =Tm-klMm 

follows from relationships (1.4). Proceeding from Hooke's generalized law, 
the layers can be written as 

Gll~=bllhEllh+bllh822 ~ +bl6kSllh; ~22h=bllkEllk+b22hE22h+b26kEllh; 
~12 h= bl6hSIlh+ b26kE22h+b66hs h. 

(I ~ 

the stresses in 

(1.6) 

Let us introduce the stresses from (1.6) in Eq. (1.4) and, taking (1.2) into account, 
we arrive at relationships relating specific forces and moments to deformations and curva- 
ture variations of the initial reference surface (an unconventional entry form is employed for 
convenience and will be used in the numerical algorithm): 

GUn=R; U~= [Eit, Ell, Kll, K12, TI, MI] T, 
R = [Ti-AtlE22-B12K22; S-Al~E22-B26K~2; Mr--BIlE22- CmK22; 

H - B26E22- C26K22; -AllEle- B22K22, - B22E22- C22K22] T; 

(1.7) 
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G= 

A,I AI8 Bn B,6 0 0 

A16 A6~ B16 Bs~ 0 0 
Bn Bm Cll C16 0 0 
B,~ B~ C,~ C~ 0 0 
A,~_ A~ Bm B2~ -1  0 
B~ B26 C12 C26 0 -- 1 

Here, new designations are introduced on the basis of identity (1.5): 

T12=S+k2H; T2a=S+k,H; M12=M21=H. 

The components of the stiffness matrix can be determined from the equations 

N fq 

,~=1 h=l  

N 
1 Z (6h3-6k-?) b,~ h (n, m= 1, 2, 6). C.m=~- 

(i.8) 

Equations of equilibrium and the boundary conditions corresponding to them can be derived 
from the combined variational principal 

5U=6A, (1.9) 

where A is the work performed by external loads, and the variation of the functional U can, 
after simple transformations, be written as: 

6U= 5~ { T16E~+ T26E22+StSEI2+MI6Kn+ M26K22+ HbKI2+Ql (6fJ1- 
fl  

N 6 k 

- + + ]" - - + 

k=l 6k_ l 

+ (82a ~ -- a44/~t~2ah -- t~45hOm8 k) ~0:23 k] dz }A iA2dtzldtz2. 

Here a~, k, ass k, and a4s k are elastic constants of the k-th layer [26]. Note that as a re- 
sult of use of Hooke's generalized law, the coefficients before stress variations oii k and 
~12 k are, by identity, equal to zero; the terms in question do not therefore figure into ex- 
pressions for 6U. 

Calculating the variation in the work of external forces and applying standard variation- 
al procedure, equations of equilibrium in terms of specific forces and moments 

O(AIS) OA1 O(klAIH) OAl (i(A2TI) OA2 T2 ~ - -  + S+ 6k 2 ~ H+ 
Oal Oal 00~2 ~ 0r 

+A1A2klNl=O (1 ~--2) ; 

O(A2NI) (~(A1N2) AIA2(kITI+k2Tj=_A1A2q; O(A2MI) 
& z ~  § 0o~2 Oal 

OA2 M2+O(A,H)-- ~-OAl H_A1A2QI=O (1~---2); 
Oal &z2 00~2 

NI=Qt-TvO,I-S02 (1-~-2) 

and additional relationships characteristic for Timoshenko-type theory 

N 6 k 

~Z S (e,zh--a45~O23~--a55h~,~h)f(z)dz='O (1~-,~-2; 4-~--~5) (i.i0) 

k=l 6k_ 1 

can be derived from (1.9). 
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Actually, Eq. (i.i0) means that the elasticity relationships for the tangential stresses 
are satisfied integrally with the significance of f(z). Equations (i.i0) make it possible to 
relate shear functions 8i with "superfluous" functions ~i characterizing the shear stress. 
For this purpose, let us introduce ei~ k from (1.2) and el3 k from (i.I) in (i.i0), and after 
simple transformations, obtain the expression 

"['Dmn ~,=q44(~,-01)-~45(~2-02) (I~-2; 4~---5); q~n-- 
T44T55 - -  T452 

(re, n = 4 , 5 ) ;  (i.ii) 

N 6 k N 6 h 

h=l 6k_ j h=l ha_ 1 

The s p e c i f i c  t r a n s v e r s e  f o r c e s  remain  to be computed.  From t h e  f i n a l  e q u a t i o n  of  (1 .6)  
and (1 .1)  and c o n s i d e r i n g  ( 1 . 1 1 ) ,  one d e r i v e s  

Ql=~pl (1~-2). 

Thus, the simplest variant of the geometrically nonlinear theory of anisotropic multi- 
layer Timoshenko-type shells is constructed. 

Let us focus attention on the ultimate transition to isotropic homogeneous shells. If 
it is assumed that f(z) = 3/2h[i- (4z2/h2)], we can arrive at the relationships 

6 Q, 
~,-01= f6v h (I=2), 

which are derived in confirmity with Reissner [27]. Here G' is  the transverse-shear modulus. 

2. Let us now dwell in greater de t a i l  on the axisynanetric stress--strain s ta te  of aniso- 
tropic laminar shel ls  of revolution. Since the shel l  wi l l  be deformed axisymmetrically, 
a l l  quantit ies characterizing the s t r e s s - s t r a i n  s ta te  of the shel l  w i l l  be functions of but 
one variable a l .  Equations (1.2) and (1.3) are therefore substant ia l ly  s a t i s f i e d :  

1 dm . 1 dul ~-klw; e 2 = k ~ . w - p u l ;  ,Ot=k,ut A, dai' 02=k2u2; 81= A, dal 

�9 ; K~2=-P~l ;  1 d[~ +p~2+ ( 2 . 1 )  1 dtt 2 1 d~l / ( ,2= j 1 
r Al dal +pu2; Kn = A~ da, doh 

k2 du2 
-4 -k kipu2. 

A~ dai 

The a d d i t i o n a l  g e o m e t r i c  p a r a m e t e r  0 = ~(dA2/da~) / (A1A2)  i s  i n t r o d u c e d  in  Eqs. ( 2 . 1 ) .  Assum- 
ing  Bi = 8i and dropping nonlinear terms in all relationships, we arrive at the Kirchhoff-- 
Love linear theory of thin elastic anisotropic shells, in particular, K~= = 2k2~. 

Analyzing elasticity relationships (1.7) and Eqs. (2.1), we see that they differ sig- 
nificantly from similar relationships of axisymmetric orthotropic shells. The special fea- 
ture of the problem under investigation consists in the fact that here, one must deal with a 
complete system of nonlinear differential tenth-order equations, which can be written as 

ds -p (TI- Tj -kLNl; 

dal _ r ~" w 1 
d S * = 2 p S * + k 2 ( T 2 0 2 + S O L ) "  d-rH-=2pH+Q2; -~s - - -~ , l - - ,~  - - ~ - 0 / ;  
ds ' as  

d ~ _ = k , . [ _  01; ~!~_~ ~" ] ; (2.2) 

' d~ 2 = e 1 2 - p / X 2 - O ' 0 2 ;  d?2~:K'2-pg23-~k2(e12--Ol'O2);tls 8 " = 8 + 2 ~ 2 ~ ] ;  

d 1 d 

ds A ,  dotl 

Let us supplement canonical systems of differential equations (2.2) with five heterogeneous 
boundary conditions on each end of the closed shell of revolution: 
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Tl=Tl* or u l = O ;  NI=Q*, or w = O ;  MI=M*t or ~1=0;  

S$ T* = ~ x 2  or u2=O; H=M*m or e2s=O. ( 2 . 3 )  

3. We will now explain the numerical algorithm. Let us introduce new designations for 
the desired quantities: Y = [TI, Nx, MI, S*, H, ul, w, ~i, u2, e23] T. The problem involving 
the reduction of the nonlinear edge problem to the solution sequence of linear problems can 
be solved by Newton's modified method [23]. According to this method, system of equations 
[2.2) can be linearized and written as 

dy(n+l) 
dx =AlP(x, y(n), y(n+,)).  ( 3 . 1 )  

Vector F can be determined from the equations 

Fl=9(yl(n+l)- T~(n+O) -klY2(n+l); F2=klYl(n+l) +gy2(n+l) +k2T2(n+l)-xq; F~=p( Y3(n+O-M2(n+l)) + Ql(n+l); 

F4=29Y4('~+~) +k2 (~02(n)T2 (n+O + T2(n)02 (n+O -xT2 (n)O2(n) + $(n)01(n+D + 
+ 01(mS(~+l) --  X01(,oS(~)); Fs=2pYs(n+t)  + Qg(n+1); ( 3 . 2 )  

,~ 1 
F 6 _ _ E l l ( n + I )  __klYT(n+l)_Ol(n)01( +L)+-~_ %(01(n))2; F~=kly~(n+D-Ol(n+l); 

F8 =/<i t  (n+~); F~=E~2(n+l) -oYg(n+~) - -  01(n)02 (n+l) .--,o2(n)(~ l(n+ 1) +~01 (n)02(n) ; 

F~o =/(12 (n+~) -- 9Y~o (n+I) - 2k~ (El2  (n+l) - 01 (n),02(n+l) - 02(n)01 (n+l) -{- )~01(n)02 (n)) ; 

We have the relationships c~l=x;  qmn=xC~m, (trt, n = 4 ,  5).  

02(n)=k2Yo(n); K z z ( n ) = - p Y s ( n ) ;  E22(n)=k2YT(n)-pY~(n)+~(O2(n))2; 

S(~)=y~(~)_2k~Y~(~); •  y~(~); ( 3 . 3 )  

,Ol (n) = ( q44Ys(n) -- Y2(n) -S(n)02(n) - -  q45 Ylo(n) ) xn -1, 

at the n-th step of the iteration process, and 

02(n+O=k2y~(n+l), K~2(n+l) = -- pys(n+~); 

E22(n+l) = k2 YT(n+ I) - p Y6 (n+l) -}- 02(n),02(n+l) - + Y~ (02 (n)) 2; ( 3 .  4 ) 

S(n+t)--  y~(n+l)-2k2y~(n+~) ; 01(n+ 1) : [q44ys(n+~)-Y2(n+O-S(n),O2(n+l)- 
- 02(n) (S (n+l) _ zS  (,o) - q4~Y~o(,*+~) -,0,~ (") ( Y~ (~+~)- ;(Yi(~)) ] • 

Q 1 (n+l) = q44 (Y8 (~+~) - 0~ (~+~)) - q45Y10(n+l); 
Q~(n+o =q~y~o(n+O_q4~(ys(~+~)_ 0~(~+,)) 

at the n-th + 1 step. Here the parameter X is introduced for the convenience of entry. When 
X = 0, homogeneous system of linear differential equations (3.1) should be integrated, and if 
X = i, we arrive at a heterogeneous system. 

Boundary conditions (2.3) can be written in the following manner: 

Yj (x0) Y5 + Yj+5 (Xo) (1 - Ys) = O; Y~ (xm) ~i+5 + Y5+5 (xm) (1 - ~'J+s) : 0 (3.5) 
(i = 1 . . . .  , 5 ) .  

In Eqs. (3.5), the parameters ~j assume the value 0.i and define any combination of kinematic 
and static boundary conditions at the ends of the closed shell of revolution. 

System of equations (3.1) can be solved by Godunov's orthogonal-sweep method [28]. Ac- 
cording to this method, we must know the numerical value of the vector F as determined by 
relationship (3.2) for the n-th + 1 iteration at a certain point in the numerical algorithm. 
In this case, the sequence of computations will appear as: 

a) Determine 0=(n), K22(n), E22(n), s(n), 61(n) from Eqs. (3.3); 

b) find T2(n), solving system of linear algebraic equations (1.7) GUa (n) = R(n); 

c I relationships (3.4) yield e2(n+1), K22 (n+~), E22 (n+:), S (n+1), 0: (n+1), QI(n+1), 
Q2 (n+1 ; 
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Fig. i. Dependencies of circumferential displacement 
(a) and deflection (b) relative to uo and dimensionless 
axial coordinate. Nonlinear theory: uo = 1 (i) and 5 
mm (2). Linear theory: ---) any value of uo; O) values 
after Cohen [20]. 

(n+ z ) d) determine GU~ (n+~) = R (n+~) from system of algebraic equations E~ (n+~), E~2 
K11(n+1), K12(n+~), T=(n+~), Ma(n+z); 

e) compute vector F on the right side of Eqs. (3.2). For further details of the algo- 
rithm, refer to [23], where special features of the realization of the algorithm for numerical 
solution of Kirchhoff--Love strength problems of orthotropic shells are presented. The algo- 
rithm in question was realized in the form of an ANSTIM program, which utilizes the matrix 
capability of the BESM-6 computer. 

4. As an example of the use of ANSTIM~ let us examine an anisotropic homogeneous cylin- 
drical shell with rigidly fixed edges, one of the ends of which is located at a distance uo. 
This problem was studied in a linear arrangement by Gulati and Essenburg [19] and Cohen [20]. 
The shell has the following geometric and mechanical characteristics [19]: h/R = 0.2, L/R = 
i, a~ = 0.552"E, a=2 = 1.076"E, a66 = 1.08"E, az2 = --0.0042"E, az6 =--0.379"E, ~z6 =--O.531" 
E, a,4 = a55 = 3.312"E, a45 = 0, and E = 0.001422 mm2/kgf. Here L is the length of the gen- 
eratrix and R is the radius of the cylindrical shell. 

Relationships between the circumferential displacement and deflection relative to uo and 
a dimensionless axial coordinate are presented in Fig. i. A comparison ismade with results 
published recently by Cohen [20]. Let us turn our attention to the error generated by the 
linear theory, which increases with increasing uo (for nonlinear computations, R = i00 mm). 

In closing, let us compute the stress--strain state of a circular torus-shape shell com- 
posed of an even number of anisotropic antisymmetrically arranged layers. It is known that 
these designs have come into widespread use in engineering (e;g., a pneumatic diagonal tire 
with an accuracy acceptable for practical computations can be referred to the~class of prob- 
lems under consideration [29]). The problem in question is also of interest in connection 
with the fact that at the present time, shells fabricated from an even number of cross-rein- 
forced layers are computed on the basis of the theory of orthotropic shells. 

The mechanical and geometric parameters of the shell can be selected close to those used 
in the tire industry for the production of heavy-duty diagonal tires: the elastic constants 
of the chord (reinforcement) E c = I0 ~ kgf/cm 2 and ~c = 0.3, the elastic constants of the rub- 
ber (binder) E r = 60 kgf/cm 2 and ~r = 0.49, the thread diameter of the chord d c = 0.07 cm, the 
thickness of the elementary rubber-chord layer ho = 0.12 cm, the angle formed by the chord 
thread with the meridian at the equator ~o = 52 ~ , the chord frequency along the equator io = 
9, the number of rubber-chord layers N = 8, the internal pressure q = 5 kgf/cm =, Ro = 40 cm, 
and Rz = i0 cm (Fig. 2). Cnn$idering the assumption concerning the thinness of the shell 
walls, the slope angle u between the chord and meridian and the thread frequency i can be 
computed from the equation [29] 

r R~ cos yo 
sin Y=-~o sin yo; i=io . ,  

r c o s  y 
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Fig. 2. ~ Computation of stress--strain state of circular torus-shape shell. 

Fig. 3. Dependencies of specific bending and twisting moments on angular 
coordinate for nonlinear case (~) and with disregard for geometric non- 
linearity (---). 

where r is the distance from the axis of rotation to the shell parallel for which y and i 
are determined. Note that the chord angle Yk of the k-th layer is related to y by the rela- 
tionship Yk = (--i)~. 

Let us take the contact surface between the fourth and fifth layers as the reference 
surface; Eqs. (1.8) then reduce to the simple relationship 

(All, AI2, A22, A66) =h (bll, bl2, b22, b66)" (Ctl, Cm, C22, C66) h~ h2 ' = - ~ ( b l l ,  b12, b22, b66); (B16, B26) = - ~ - ( b 1 6 ,  b26). (4 .1 )  

The s t i f f n e s s - m a t r i x  c o m p o n e n t s  n o t  d e f i n e d  i n  ( 4 . 1 )  a r e  c o n s i d e r e d  z e r o .  The e q u a t i o n  
c i t e d  by  T e t e r s  e t  a l .  [21]  w e r e  d e r i v e d  f o r  t h e  c o e f f i c i e n t s  brn n (m, n = 1 ,  2,  6 ) .  The 
e l a s t i c  c o n s t a n t s  o f  t h e  u n i d i r e c t i o n a l  r e i n f o r c e d  l a y e r  c a n  be  computed  i n  c o n f o r m i t y  w i t h  
e q u a t i o n s  p r e s e n t e d  i n  monograph  [ 1 5 ] .  A f i n a l  s t e p  i s  r e q u i r e d  i n  t h e  i n t e r p r e t a t i o n s ,  s i n c e  
t h e  e q u a t i o n s  r e f e r r e d  to  a r e  v a l i d  f o r  r e i n f o r c e d  p l a s t i c s ;  t h i s  ha s  b e e n  c o n f i r m e d  b y  e x p e r i -  
m e n t a l  s t u d i e s .  B e c a u s e  t h e r e  i s  n o t h i n g  i n  t h e  l i t e r a t u r e  on t h e  a p p r o a c h  b a s e d  on s t r u c -  
t u r a l  a n a l y s i s  o f  t h e  r u b b e r - c h o r d  l a y e r ,  w h i c h  w ou l d  t a k e  i n t o  a c c o u n t  t h e  s t r u c t u r e  o f  t h e  
l a y e r  and  t h e  m e c h a n i c a l  p r o p e r t i e s  o f  t h e  c o m p o n e n t s  c o m p r i s i n g  i t ,  l e t  us  d w e l l  on t h e  r e -  
l a t i o n s h i p s  g i v e n  by  M a l m e i s t e r  e t  a l .  [15]  as  a f i r s t  a p p r o x i m a t i o n .  

Le t  x d e n o t e  a n  a n g u l a r  c o o r d i n a t e ,  w h i c h  v a r i e s  f rom 0 ~ a t  t h e  e q u a t o r  t o  120 ~ a t  t h e  
r i m  ( r e g i o n  o f  f i x i t y ) .  A c c o r d i n g  to  ( 3 . 5 ) ,  a s e t  o f  t e n  q u a n t i t i e s  Y1 = Y3 = . . .  = Y~o = 0 
and  y2 = 1 c o m p l e t e l y  d e f i n e s  t h e  b o u n d a r y  c o n d i t i o n s  a t  t h e  e q u a t o r  and  a t  t h e  p o i n t  on t h e  
r i m .  The p r o c e s s  o f  s u c c e s s i v e  a p p r o x i m a t i o n s ,  w h i c h  i s  u s e d  i n  ANSTIM e x h i b i t s  r a p i d  c o n -  
v e r g e n c e :  a r e l a t i v e  a c c u r a c y  o f  10 -5  i s  a t t a i n e d  a f t e r  a t o t a l  o f  f o u r  i t e r a t i o n s .  The num-  
b e r  o f  o r t h o g o n a l i z a t i o n  p o i n t s  was t a k e n  a s  20 a nd  40,  and  had v i r t u a l l y  no e f f e c t  on t h e  
r e s u l t s  o f  t h e  c o m p u t a t i o n .  

Relationships between specific bending and twisting moments and the angular coordinate 
are shown in Fig. 3. The existence in the zone of the equator of a specific twisting moment 
that exceeds the specific bending moments by an order of magnitude appears somewhat surpris- 
ing at first glance. Table i, which illustrates the relationships between the layer stresses 
and the transverse coordinate z, fully explains the phenomenon observed. Here, the tangen- 
tial stresses attain a significant magnitude, and should be considered in designing diagonal 
tires. Note that the linear problem does not produce such an expressed anisotropy effect 
owing to values of the specific moment MI on the extreme high side. Analysis of the last two 
relationships of (4.1) confirms the results obtained; it is therefore necessary to advance 
the theory of anisotropic shells for the design of low-ply tires. If the number of layers in 
the shell is sufficiently large, limB~G=0 and traditional design methods will yield good 
results. N~ 

In conclusion, note that the greatest effect realized from use of the ANSTIM should be 
expected in the numerical solution of more complex problems involving the strength of shells 
of revolution fabricated from essentially anisotropic materials. 
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TABLE i 

Layer 
number 

-6A8 
- -  0,45 
- -  0 , 4 2  

- -  0 , 3 9  

--0,36 

-0,36 
- 0,33 
- 0,30 
- -0 ,27  
- - 0 , 2 4  

0,24 
O,27 
0,30 
0,33 
0,36 

0,36 
0,39 
0,42 
0,45 
0,48 

44,89 
44,74 
44,59 
44,44 
44,29 

44,87 
44,69 
44,51 
44,32 
44,14 

41,26 
41,11 
40,96 
40,81 
40,66 

40,52 
40,34 
40,16 
39,98 

39,80 

x = O  ~ 

Cry2 

45,47 
45,32 
45,18 
45,03 
44,88 

.45,66 
�9 45,47 
.45,29 
-45,10 
-44,91 

41,96 
41,81 
41,6~ 
41,51 
41,3; 

-41,1~ 
-41,01 
- 40,8' 
- 40,6~ 
- 4 0 , 4 ~  

(~tl 

39,71 
39,99 
10,27 
~0,55 
t0,83 

39,54 
39,83 
30,11 
40,40 
~0,68 

46,43 
46,71 
46,99 
47,27 
47,55 

46,38 
46,66 
46,95 
47,23 
47,52 

x = 9 0  ~ 

20,80 
20,94 
21,08 
2l ,22 
2,1,36 

20,66 
20,80 
20,94 
21,09 
21,23 

24,14 
24,28 
24,42 
24,5G 
24,70 

24,07 
24,21 
24,35 
24,4 c 
24,62 

26,60 
26,79 
26,97 
27,16 
27,34 

--26,35 
- -  26,54 
--26,73 
-- 26,92 
--27,11 

31,06 
31,24 
31,43 
31,61 
31,80 

- 30,90 
--31,09 
--31,28 
--31,47 
--31,66 

The authors express thanks to Professor A. N. Frolov for his useful critique of the 
work. 
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ISOPARAMETRIC TRIANGULAR FINITE ELEMENT OF A MULTILAYER SHELL AFTER 

TIMOSHENKO'S SHEAR MODEL 

R. B. Rikards and A. K. Chate UDC 624.074:678.067 

i. STIFFNESS, MASS, AND GEOMETRIC-ELEMENT-STIFFNESS MATRICES 

It is known that in the Kirchhoff--Love theory of shells, the construction of an adjusted 
finite element for shells of arbitrary shape is associated with significant difficulties, 
since in this case, it is necessary to ensure continuity between the elements of the first 
arbitrary deflection in formulating the problem in displacements. These difficulties do not 
arise in the theory of Timoshenko-type shells, since it is necessary to ensure continuity be- 
tween the elements of just the most generalized displacements to construct an adjusted finite 
element where the principle of minimum patential energy is utilized. This makes it possible 
to employ the same functions of the finite-element form in the theory of Timoshenko-type shells 
as in elasticity. 

i. Functionals That Can Be Minimized. Let us examine the derivation of stiffness, incre- 
mental-stiffness, and mass matrices for an isoparametric finite element after Timoshenko's 
shear model using the principle of minimum potential energy in the shell. Let us position a 
system of curvilinear normal coordinates {xa; x 3} witha coordinate base {a~; a~} on the median 
surface of the shell so that the base vector as is directed toward the external normal to the 
surface. The functional of the strain energy of the shell element, which is treated as a 
three-dimensional body, takes the form 

2 o'.'ei:dV=-f ~ AiSktehle~:dV (i, 7, k, I= 1,2, 3). (1 .1 )  
V V 
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