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The problem of stress analysis of muitilayered shells can be described by the differen- 
tial equations obtained in [i, 2] on the basis of the hypothesis of the broken line. Trans- 
verse shears and transverse tangential stresses on the strength of the use of Hooke's law are 
uniformly distributed across each layer. With the aid of independent kinematic [i] and static 
hypotheses the present authors constructed in [3] a geometrically nonlinear variant of the 
theory of shallow multilayered shells that is consistent from the point of view of the mixed 
variational principle and in which tangential stresses are continuous functions of the trans- 
verse coordinate, and on the boundary surfaces they assume specified values. 

The present work is a further development of [3]. We deal with multilayered anisotropic 
shells Chat are not shallow. By using the mixed variational principle we obtained 2N + 3 
equations of equilibrium, the boundary conditions corresponding to them, and also N + 1 inte- 
gral relations of elasticity expressing the correlation between transverse tangential stress- 
es and shears. Here, N is the number of layers in a stack. We investigated numerically the 
effect of nonuniformity of the tangential stresses in crosswise reinforced shells. 

I. Let us examine a thin shell composed of N elastic anisotropic layers. As reference 
surface ~ we adopt the inner boundary surface which we attribute to the curvilinear orthogon- 
al coordinates ~I, ~2. The transverse coordinate z will be counted toward the side of increase 
of the external normal to the reference surface. Let h be the thickness of the shell; hk is 
the thickness of the k-th layer; 6 k is the distance between the reference surface and the up- 
per boundary surface of the k-th layer; k i is the curvature of the coordinate lines; A i is the 
Lame parameter; ui, w are the tangential and normal displacements, respectively, of points of 
the reference surface; q is the normal load; 6ij is the Kronecker delta. Here, and henceforth 
i, j = i, 2; k = i, 2,..., N. 

In accordance with [i] the material of each layer is transversely incompressible, and 
the tangential displacements within the limit of the k-th layer are linear relative to the 
transverse coordinate : 

h--I 

ui{1~l=u~+ ~ '~hn~ic')+ (Z--Sk-,)~ilh); W (~)=w. (i.i) 
n=l 

Most relations of the suggested variant of the theory of multilayered anisotropic shells are 
formally simplified if the hypothesis (i.i) with a view to the new notation 

hn, ( n = l , 2 ,  . N) 
~ n =  O, k < ~ n  " " '  

is rewritten as follows: 
N 

�9 = ~ ~kn~i(n)+ (Z--6k--1)~/kl. (1.2) 
n=l 

With the aid of the limit transition 8i (k) -- 8i hypothesis (1.2) changes into a kine- 
matic hypothesis type Timoshenko adopted for the entire stack of layers as a whole, and this 
makes it possible later on ho check the obtained relations by comparing them with the cor- 
responding relations of the theory of multilayered anisotropic shells type Timoshenko [4]. 
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For the transverse tangential stresses we use an independent approximation. We adopt 
the assumption that they are distributed across the k-th layer in the form 

~3 (h) = fo (z) ~(o) + f~ (z) ~dh). ( 1 . 3 )  

If we neglect the tangential loads acting on the boundary surfaces of the shell, then the a 
priori specified continuous functions fo(z), fk (z) have to satisfy the conditions 

fk(z )=O;  Z~[6k- , ,6h];  h ( ~ - l ) = f ~ ( ~ ) = O ;  fo(~o)=~o(~)=O, 
which ensures the continuity of the transverse tangential stresses along the z-coordinate 
oia (ever~here)(6N) ~n0.the shell including also on the layer interfaces z = 6k. Then oia(t)(6o) = 

Henceforth we will use the matrix approach; this will enable us to write the cumbersome 
relations of the theory of multilayered anisotropic shells in a compact, easily discernible 
way. For instance, we represent the relations of elasticity in the form 

o(~)=b(~)~(~), (1.4) 

where b(k) is the matrix of the tangential rigidities of the k-th layer 

o(k~, E(k) are column matrices 

[ bll(h) bl2tk) bl6(h) l 
b(k)= bI2(M b22(M b261 ~') | ; 

b16(h) b26(~) b6~(~) 

o(h) = [OLl(h), (i22(h), (112(~)] T; e(~) = [elltk), ~22(h), el2(h)] :r. 

2. Let us consider axisymmetric deformation of a multilayered anisotropic shell of revo- 
lution. In this case the shell will be deformed axisymmetrically, always remaining a solid 
of revolution, and all the magnitudes characterizing its state of stress and strain will be 
functions of one variable ~ only. This, however, does not mean that the circumferential dis- 
placement u~, the tangential stresses 0:2, 0=3, and deformations EL~, E2s are identically equal 
to zero. However, numerical experiments show that the contributuion of these magnitudes to 
the state of stress and strain is substantial, and when it is neglected, it sometimes leads 
to a distortion of the real pattern of the state of stress and strain of an anisotropic shell. 

Let us now turn to the nonlinear strain relations [5]. We introduce the displacement 
from (1.2) into the expressions determining the strain tensor in the case of the simplest non- 
linear variant of the theory of axisymmetric shells of revolution in quadratic approximation, 
and using the assumption that the structure is thin-walled, we obtain the formula 

N 

eiJ(h)=Eij+ Z ~hnKij(n)+ ( z-~h-1)Kij(h); ei3(h)=~i(h)--Oi' (2 .1)  

where n=~ 

E 1 11=e1+-~-01 ; E12=co+0r02 (1~--2); 

1 du I +klw; 82=k~w_put; e~- AI &zi 

du2 1 d~l (hI 
_ _  = A~ d~l ~Pu2; KlX(k)=Al d~l ' /(221~'} --i0~llh); 

i dig2 (k) 1 dte 
K121h)= Al dcz~ {-Pl~2(h}; '01~-~kl//l-- "A1 d~l ' 

1 dA2 
'02 =k2tt2; p= AIA2 d=l " 

(2.2) 

The construction of a mathematically substantiated theory of multilayered anisotropic 
shells within the framework of the adopted system of the independent kinematic and static hy- 
potheses (1.2), (1.3) requires that the mixed variational principle [6] be applied: 
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6II = 6A**+ 6A*~, (2.3) 
where Ax* is the work of the external surface loads; Aa* is the work of the external circum- 
ferential forces, and the variation of the functional E after standard transformations in the 
spirit of [4, 7], with relations (1.3), (1.4), (2.1) ~aken into account, is represented in 
the form N 

6rl-- ~{TT6s Z[ *(~)T6K(~)q-Q(~)T6S~(~)+ 
k=l  

+ ~ (sslh,-aalh)oa,h,)~'(:o(Z)8~(o,+~,,(z)8~(~,)dz ] } A,A=dcz,dcz,. (2.4) 

In (2.4) the following notation was used: 

E=[Em E==, Ex~]T; K(~I= [Kn (a~, K=2 (~), KI~{k)]T; 
83(k)---[813(h)) 823(h)]T; (~3 (k)--- [O'ls(h), (~231h)]T; 

(2.5) 
Q{k)=[Ql(h) , Q21~]r; ~(-~=[~(-~,  ~2(-I] T (n=0,  k);. 

as(k,= [ ass (h, a4~(~' ]. 
a45 (h) aaa(~) 

Hare, amn (k) are the transverse shear compliances of the k-th layer; Tij are tangential speci- 
fic forces; Qi(k), ~ij(k) are transverse specific forces and generalized specific moments, re- 
spectively, of the k-th  layer determined by the formulas 

(2.6) 

N 8 k 8~ 

Tij= Z T / / a ) ;  T,/h)= ~ (y/j(k)dz; Qt(k)=; a/3(k)dZ; 
k~ l  8h_ l 8h.-1 

8 k N 

(D'/a)= ~ (nJ(alzdz-8~-lTt/a)+ 2 g.nTo(m. 
Oh_ 1 n ~ l  

The mixed variational principle opens up the natural way of reducing the three-dimension- 
al problems of the theory of elasticity to the two-dimensional problems of the theory of shells, 
thus making it possible to resolve some contradictions contained in the initial system of kine- 
matic and static hypotheses. For instance, its use makes it possible to correlate the vectors 
8 (k) = [8~(k), 82(k)]T from (1.2) with the "superfluous" vectors ~(o), p(k) characterizing the 
regularity of the distribution of the transverse tangential stresses across the thickness of 
the stack. 

If we calculate the variation of the work of external loads and substitute the found 
values of 6A**, ~Aa* together with 6H from (2.4) into the variational equation (2.3), then after 
the standard variational procedure, taking (2.1), (2.2), (2.5) into account, we obtain 2N + 3 
equations of equilibrium in specific forces and moments 

1 dTll  1 dNl 
Al dai--9(Tn-T22)-klNI; AI ddl =PNI-FklTn+k2"l'22-q; 

1 �9 dOl,Chl 
A1 dal =P(On{h)--O221h))+Q1(h) (k=l ,2  . . . . .  

1 dT12 
Al d~q ---2pTI~-k2N2; 

1 dO12 (kl 
"Al dal = 29(lh2(h) + Q2(h) (k=l ,2  . . . . .  N); 

N 

NI=QI-TnOI-TI~02; Ql= L QL (k) (1~2),  
hJ=l 

N); 

(2.7) 
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the boundary conditions corresponding to them and the additional integral relations 

N 6 k 

) "  ~ (ca (4) - aa(n)o~ 14')fo (z)dz = O; (2 .8 )  
4=1 fib_ l 

Oh 

j" (e3 c~) - a3(h) o3 ck)) f4 (z)  dz  = O, ( 2 . 9 )  
~a-t  

whose mechanical meaning consists in the following. The relations of elasticity for the trans- 
verse tangential stresses are fulfilled integrally across the thickness of the k-th layer with 
the weight function fk(z), and additionally across the thickness of the stack with the weight 
function fo(z). 

Formulas (2.8), (2.9) are of great importance in the variant of the theory of multilayered 
anisotropic shells involved because with their aid in particular is it possible to correlate 
the vectors 8(k) with u(o), B(k). For that purpose we introduce oi3(k) from (1.3) into 
relations (2.8), (2.9), and introducing the notation 

8k 8k 

fo(Z)dZ; fo' (z)ez; 
8h-- I 6h-- 1 

5a 5h 

to(z)t4(z)a ; z4 = t4 (z)az, 
8h_ l 6h-- I 

we obtain the system of linear algebraic equations with respect to the functions ~i (~ ~i(k): 

N N 

~ "  (%haa(h)~'~ %h~ (h)) = Z ~he3(k'; %h0aa(~'~ (~ + %kha~(h'~ ̀h) =e3'h)" (2 .10)  
h=l, h=l  

Here we adopted 

6h 

f~ (z)dz= 1. 
8h--i 

Taking the new designations (m, n = 4, 5) 

N 

q*mn-- ~'mn Z ( ~,h ~,h02 ) , Tmn = ~hh ] amn(h); 
T44T55 -- T452 h = t 

1 ~mn (h) 
~lmn (k) = 

Lhh a44(~)a55( k ) -  (a4~(4)) 2 ' 
N 

~ i = 2 ( ~ 4 -  ~--~- h 8i3(h) 
h=l  

into account, we represent the solution of the system (2.10) in the form 

Dl(~ ~tl(k)=~44(k)s13(h)--~45(h)s23(h) ~h4 ~1(0) 

(1~-2; 4~-5).  (2 ,11)  

B a s i c a l l y ,  f o r m u l a s  (2 .11)  s o l v e  the  posed  p rob lem s i n c e  t h e  t r a n s v e r s e  t a n g e n t i a l  s t r e s s e s  
from (1.3), the transverse specific forces from (2.6) can be expressed through the components 
of the vector of generalized displacements ui, w, 8i (k) . Thus we constructed the geometrical- 
ly nonlinear variant of the theory of multilayered anisotropic shells which is consistent 
from the point of view of the mixed variational principle and takes the nonuniform distribu- 
tion of the transverse tangential stresses across the stack into account. 

Let us now revert to the specific forces and moments. If we substitute the stresses from 
(1.4) into formulas (2.5), (2.6), and integrate, taking the deformation expressions (2.1) into 
account, we obtain relations correlating the specific tangential forces and generalized moments 
with the kinematic characteristics of the reference surface. We write them in matrix form: 
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N N 

T = A E +  s D(~)KO'); @thI=DI',)E+ s F(~n)K(,~}. 

For the rigidity matrix of the shell the following formulas apply: 

A= s  D(~)=B(~~ s a,,~A('~); 
~=1 n = l  

Ft~n) = 6~n [C 1~) -- ~n-~ Bin) - / ~ - t  (B{n) -- ~n-1 A(n)) ] + ~hn (Blhl -- ~h_~Ath)) + ~ g  (B In> - (~n-lA (n)) + i s  ~mh~mnA{ra)' 
m = l  

where A (k) , B (k) ,  C (k) a re  the ma t r i ces  of membrane, membrane- f lexura l ,  and f l e x u r a l  r i g i d i t y  
of the k-th layer, respectively. If we assume that the mechanical characteristics within the 
limits of each layer of the shell do not depend on the transverse coordinate, we can write 
the expressions for these matrices in the form 

! 
A~) = ~ 'b( ~}" -~- (~  (bh--  0 ~ - ~  , B(~I = - ~ _ ~ ) b ( ~ ) ;  

3. We w i l l  now d e r i v e  the  normal system of o rd ina ry  d i f f e r e n t i a l  equat ions  which is  r e -  
solvent and fully determines the state of stress and strain of the shell. The first 2N + 3 
equations were obtained earlier. These are equations of equilibrium in specific forces and 
moments (2.7). The other group from the 2N + 3 equatlons follows from the deformational re- 
lations (2.2) and can be written in the form 

I d U l = E n _ k ~ w _  1 1 dw =klul-Ol;  
A1 dtz~- 2 "-0x2; A1 d o ~ -  

1 d l~(  ~ 
---Kn {k} (k= l ,2  . . . . .  N); 

A1 do~l 
1 du2 

A'-7 -&z--/-- E~2-ou2-O~'O~; 
1 d~2 {~} 

A~ d~z~ =gn~l-p~21~l (/~=1,2 . . . . .  N) .  

(3.1) 

We represent the obtained system of equations (2.7), (3.1) in matrix form. 
purpose, we introduce the vector of solutions with the dimensionality 4N + 6: 

Y= [T11, NI, ~Lt01,..., ~ii CN), TI2, ~120) ..... ~t2 Cm, 

For that 

(3.2) 

With a view to the notations (3.2) the normal system of equations can be written as follows: 

I du 
. . . .  G (~I, Y)- (3.3) 
A~ d=l 

We supplement the normal system (3.3) with 2N + 3 boundary conditions on each end face 
of the closed shell of revolution 

r~ (a*l) I~ + Y2n+~+~ (~'1) (1 - In )  = 0; 
Y~ (~*'h) I~+3+~ + Y~+a+~ (~**0 (1 - ~N+~) =0. (3.4) 

In (3.4) the criteria of the boundary conditions ~n, 12N+3+n (n = i, 2 ..., 2N + 3) assume the 
values O, i and determine an arbitrary combination of kinematic and static boundary conditions 
on the end faces of the shell e~ = ~, ~t = at*e. 

4. In practice the solution of nonlinear boundary-value problems is usually effected 
with the aid of various iteration methods. Promising are those iteration processes which at 
each step lead to the solution of linear boundary-value problems. Here we will solve the 
problem of reducing a nonlinear boundary-valueprob]em to a sequence of linear boundary-value 
problems by the method of quasilinearization [8]. The method of quasilinearization proved 
its worth in the solution of geometrically nonlinear problems of classical Kirchhoff--Love 
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shells [9, i0] and ofshells type Timoshenko [4, 7]. Therefore, without entering into details 
of a computing nature, we present the linearized system of differential equations 

1 dYlm+t] 
At dg l  = G* (~1, yim], y[m+m]). ( 4 . 1 )  

In view of the limited length of the article we omit the expressions for the vector compon- 
ents on the rlght-hand sides of the system (4.1); for details we refer the reader to the 
articles [4, 7] which dealt with similar methods of numerically solving nonlinear problems 
of multilayered anisotropic shells. 

We will briefly formulate the algorithm for solving the boundary-value problem (3.3), 
(3.4). We begin with the trial solution Yn [~ = 0 (n = i, 2, ..., 4N + 6), then we find the 
successive approximations y[t], y[2], ... by solving the linear boundary-value problems (4.1), 
(3.4) at each step of the iteration process by the method of orthogonal matching [ii]. The 
choice of the zeroth initial approximation makes it possible at the first step of the succes- 
sive approximations to determine the vector of the solutions Y[~] describing the state of 
stress and strain of the geometrically linear shell. 

The above-explained algorithm for the numerical solution of the nonlinear boundary- 
value problem (3.3), (3.4) was realized in the form of standard procedures in the algorithmic 
language PL/I. All the numerical calculations were carried out on an ES-1060 computer. 

5. Let us consider a reinforced shell made of an even number of asymmetrically arranged 
layers. We take it that all the layers of the shell have the same kind of structure and differ 
from each other only by the angle of the reinforcement y(k) = (_l)k-tya where Ya is a constant 
magnitude. 

We realize the problem numerically for a four-layer circular toroidal shell (Fig. i) with 
the geometric parameters h = 0.48 cm; Ro = 25 cm; R~ = 5 cm (Ro is the distance between the 
axis of rotation and the equator, R~ is the radius of the generatrix of the circle of the re- 
ference surface) made of a rubber-cord composite. The initial material of the unidirectional 
reinforced layer with thickness ho = 0.12 cm is textile cord with modulus of elasticity E a = 
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1.6"105 N/am2; Poisson r a t i o  ~a = 0 .4 ,  and rubber  w i t h  E r = 360 N/cm~; ~r = 0 .49.  The th read 
diameter of the cord is da = 0.07 cm; the reinforcement frequency is i a = 9.9 threads/am; Ya = 
52 ~ The method of calculating the elastic constants of a unidirectionally reinforced layer 
and some other problems of the mechanics of reinforced materials can be found in [12]. 

Let the shell be loaded by internal pressure q = 15 N/cm =. In the numerical calculations 
we will assume that on the equator (~= 0 ~ the condition of symmetry is fulfilled, and the 
section of the shell with the coordinate ~ = 120 ~ is taken to be rigidly constrained. 

The numerical results represented by the solid curves in Figs. 2-5 were obtained by inte- 
gration of the normal system of ordinary differential equations of 22nd order. For the sake 
of comparison Figs. 2 and 3 present the results of the solution of an analogous problem by 
the finite element method [13] where the equations of the nonlinear theory of elasticity (dot- 
dash lines) were used. The dashed lines correspond to calculations on the basis of the theory 
of Timoshenko-type shells [4]. The graphs of the tangential stresses were plotted for the 
cross section of the shell with the coordinate ~= 90 ~ . We see that the stresses o~s are dis- 
tributed almost parabolically across the thickness of the stack, but within the limits of an 
internal layer we find a considerable deviation from the regularity of a quadratic parabola. 
On the whole it may be said that for evaluating the strength of crosswise reinforced structures 
the results of the calculations of the stresses o2s on the basis of Timoshenko-type shells are 
perfectly satisfactory. A different matter are the tangential stresses o2s. Here the graph 
of ~2s (see Fig. 3), whose maximum is shifted toward the middle surface of the outer layer of 
the shell, is of a fairly complex nature indicating nonuniform distribution of the stresses 
o=s across the thickness of the stack. The order of magnitude of the values of o~s and o2s is 
the same, and this in turn indicates that the effect of anisotropy makes a substantial contri- 
bution to the overall pattern of the state of stress and strain of the shell. Additional in- 
formation on the nature of the distribution of the transverse tangential stresses can be ob- 
tained from Figs. 4, 5 where the curves near which the values n = I, 2, 3, 4 are situated cor- 
respond to the calculations of shells with reinforcement angles Ya = 45, 0, 60, 30 ~ respective- 
ly. 
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STATE OF STRESS AND STRAIN OF HEAT-SENSITIVE CYLINDRICAL SHELLS 

MADE OF COMPOSITE MATERIALS* 

L. P. Khoroshun and S. G. Shpakova UDC 624.074:539.3:678.067 

In the stressanalysis of structures made of new fiber-reinforced materials which have 
low shear strength, dangerous stresses are in the first place transverse shear stresses [i]. 
From the point of view of practice it is important to be able to determine as accurately as 
possible the distribution of tangential stresses over the thickness of the shell. It is 
known that the temperature, too, has a strong effect of the mechanical characteristics of 
structural materials [2]. As a result of experimental investigations it was established 
that with rising temperature the shear modulus decreases more than the modulus of elasticity 
[3]. If a plate or shell is exposed to the effect of a stationary temperature field, and its 
characteristics depend on the temperature, then the shell is inhomogeneous, and this inhomo- 
geneity is asymmetric relative to its middle surface. When a symmetric regularity of change 
of transverse tangential stresses across the thickness of the shell is chosen, then some 
error from the point of thermoelasticity is deliberately admitted, and this regularity is 
to some extent in contradiction to the mechanics of deformation [4]. 

The construction of equations of equilibrium of heat-sensitive plates and shells by re- 
placing the kinematic and static hypotheses by the notion of a state of homogeneous stress 
and strain of a thin-walled element of a laminated structure [5, 6] makes it possible to 
eliminate some shortcomings of the refined variants of the applied theories of laminated 
plates and shells based on the method of hypotheses [7-10]. Such a refined model does not re- 
quire the assumption of symmetric distribution of transverse tangential stresses relative to 
the middle surface, and it makes it possible to determine their distribution across the thick- 
ness of the shell from the solution of the obtained system of equations. 

Initial prerequisites. We deal with a laminated cylindrical shell with thickness 2h, 
composed symmetrically or asymmetrically of N orthotropic layers and belonging to the tri- 
orthogonai system of coordinates x:, x2, x3 whose principal coordinate surface coincides with 
the middle surface of the shell. The principal axes of orthotropy coincide with the axes of 
coordinates. 

We assume that the shell is exposed to the effect of nonuniform steady heating of the 
form 

,OIh~ = OoChJ (x~, x2) +O~Ckl (xl, x2)x3. (I) 

*Presented at the Vl All-Union Conference on the Mechanics of Polymer and Composite Materials 
(Riga, November, 1986). 
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