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Abstract This paper focuses on implementation of

the sampling surfaces (SaS) method for the three-

dimensional (3D) thermal stress analysis of steady-

state thermoelasticity problems for laminated func-

tionally graded (FG) shells. The SaS formulation is

based on choosing inside the nth layer In not equally

spaced SaS parallel to the middle surface of the shell in

order to introduce the temperatures and displacements

of these surfaces as basic shell variables. Such choice

of unknowns permits the presentation of the proposed

thermoelastic FG shell formulation in a very compact

form. The SaS are located inside each layer at

Chebyshev polynomial nodes that improves the con-

vergence of the SaS method significantly. As a result,

the SaS formulation can be applied efficiently to

analytical solutions for laminated FG shells, which

asymptotically approach the 3D exact solutions of

thermoelasticity as the number of SaS In tends to

infinity.

Keywords Thermoelasticity � Functionally graded

shell � 3D stress analysis � Sampling surfaces method

1 Introduction

Nowadays, the functionally graded (FG) materials are

widely used in mechanical engineering due to their

advantages compared to traditional laminated materi-

als [5]. The study of FG materials is not a simple task

because the material properties depend on the spatial

coordinate and some specific assumptions regarding

their continuous variations in the thickness direction

are required [17]. This fact restricts the implementa-

tion of the Pagano approach [35, 49] for the 3D exact

solutions of FG rectangular plates. However, this

restriction can be overcome and even extend to

cylindrical shells in the case of artificial dividing the

shell into a large number of individual layers with

constant material properties through the layer thick-

ness [42]. Apparently, the use of such a technique

means that 3D analytical solutions derived are

approximate (see, e.g. [51]). The other popular

approaches to 3D exact solutions are the state space

approach [8] and the asymptotic approach [12]. Both

of them were applied efficiently to FG plates and

cylindrical panels subjected to thermomechanical

loading [1–3, 11, 39, 43]. A new approach to closed-

form elasticity solutions for FG isotropic and trans-

versely isotropic plates is considered in papers [18,
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50]. These solutions are based on the general solution

of the equilibrium equations of inhomogeneous elastic

media [37]. The efficient approach to the exact

analysis of thermoelasticity was proposed in contri-

butions [36, 46–48]. The authors studied the static and

transient thermoelastic problems for FG simply sup-

ported plates and cylindrical panels with the material

properties presented by Taylor series expansions

through the thickness coordinate. The analytical

solutions of elasticity for the transient thermoelastic

response of FG strips and rectangular plates with

simply supported edges under nonuniform heating on

outer surfaces were obtained in works [32–34]. The

closed-form solution for the FG cylindrical shell under

temperature loading was derived in [16].

The sampling surfaces (SaS) formulation was

proposed first for the 3D elasticity analysis of homo-

geneous and laminated shells in [22–24]. Further, it

was extended to heat conduction analysis [25] and

thermoelastic/thermoelectroelastic analysis [26, 27,

29] of laminated plates and shells. Recently, the SaS

formulation has been applied to 3D thermoelastic

analyses of FG plates [28]. However, the SaS approach

has not been applied to 3D steady-state thermoelas-

ticity problems for laminated FG shells including the

metal/ceramic shells yet.

According to the SaS concept, we choose any

surfaces inside the nth layer of the shell XðnÞ1;

XðnÞ2; . . .;XðnÞIn parallel to the middle surface in order

to introduce temperatures TðnÞ1;T ðnÞ2; . . .; TðnÞIn and

displacement vectors uðnÞ1; uðnÞ2; . . .; uðnÞIn of these

surfaces as basic shell variables, where In is the total

number of SaS of the nth layer (In C 3). Such choice

of temperatures and displacements with the conse-

quent use of the Lagrange polynomials of degree

In - 1 in the thickness direction for each layer allows

one to present the governing equations of the

thermoelastic laminated FG shell formulation in a

very compact form.

It should be noted that the SaS formulation with

equally spaced SaS does not work properly with the

Lagrange polynomials of high degree because of

Runge’s phenomenon [41]. This phenomenon can

yield the wild oscillation at the edges of the interval

when the user deals with any specific functions that are

appeared in a shell theory due to utilizing the

curvilinear coordinates of the middle surface. If the

number of equispaced nodes is increased then the

oscillations become even larger. However, the use of

the Chebyshev polynomial nodes (see, e.g. [9]) inside

each layer can help to improve significantly the

behavior of the Lagrange polynomials of high degree

because such choice permits to minimize uniformly

the error due to the Lagrange interpolation. This fact

gives in turn an opportunity to derive the analytical

solutions for laminated FG shells with a prescribed

accuracy employing the sufficient number of SaS.

Actually, it means that the analytical solutions based

on the SaS formulation asymptotically approach the

3D exact solutions of thermoelasticity as the number

of SaS In ? ?.

The origins of the SaS concept can be found in

contributions [20, 21] where three, four and five

equally spaced SaS are employed. The SaS formula-

tion with the arbitrary number of equispaced SaS is

considered by the authors [22]. The more general

approach with the SaS located at the Chebyshev

polynomial nodes was developed later [23, 24]. Note

also that the thermal stress analysis of laminated

composite shells on the basis of Carrera’s higher-order

layer-wise formulation [10] can be found in many

papers (see, e.g. [6, 7]). The doubly-curved shell

formulation through the higher-order equivalent single

layer theory [10] accounting for thickness stretching

has been proposed in [44, 45]. Both free vibration and

static problems are discussed with a particular empha-

sis on the stress recovery procedure. The authors

report that their procedure leads to stable, accurate and

reliable results for the moderately thick and thin

doubly-curved shells with variable principal curva-

tures. However, for the analysis of thick doubly-

curved shells instead of the post-processing stress

recovery technique a more general approach based on

the 3D constitutive equations should be applied. Such

a question is discussed here in detail.

The authors restrict themselves to finding five right

digits in all examples presented. To achieve a better

accuracy, the more number of SaS for each layer

should be taken.

2 Description of temperature and temperature

gradient fields

Consider a thick laminated shell of the thickness h. Let

the middle surface X be described by orthogonal
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curvilinear coordinates h1 and h2, which are referred to
the lines of principal curvatures of its surface. The

coordinate h3 is oriented along the unit vector

e3ðh1; h2Þ normal to the middle surface. Introduce

the following notations: eaðh1; h2Þ are the orthonormal

base vectors of the middle surface; Aa(h1, h2) are the

coefficients of the first fundamental form; ka(h1, h2)
are the principal curvatures of the middle surface;

ca = 1 ? kah3 are the components of the shifter

tensor; c
ðnÞin
a ðh1; h2Þ are the components of the shifter

tensor at SaS defined as

cðnÞina ¼ caðhðnÞin3 Þ ¼ 1þ kah
ðnÞin
3 ; ð1Þ

where hðnÞin3 are the transverse coordinates of SaS

inside the nth layer given by

hðnÞ13 ¼ h½n�1�
3 ; hðnÞIn3 ¼ h½n�3 ;

hðnÞmn

3 ¼ 1

2
h½n�1�
3 þ h½n�3

� �
� 1

2
hðnÞ cos p

2mn � 3

2ðIn � 2Þ

� �
;

ð2Þ

where h3
[n-1] and h3

[n] are the transverse coordinates of

layer interfaces X½n�1� and X½n� depicted in Fig. 1;

h(n) = h3
[n] - h3

[n-1] is the thickness of the nth layer.

Here and in the following developments, the index

n identifies the belonging of any quantity to the nth

layer and runs from 1 to N, where N is the number of

layers; the index mn identifies the belonging of any

quantity to the inner SaS of the nth layer and runs from

2 to In - 1, whereas the indices in, jn, kn describe all

SaS of the nth layer and run from 1 to In; Latin

tensorial indices i, j, k, l range from 1 to 3; Greek

indices a, b range from 1 to 2.

Remark 1 It is seen from Eq. (2) that the transverse

coordinates of inner SaS hðnÞmn

3 coincide with coordi-

nates of the Chebyshev polynomial nodes [9]. This

fact has a great meaning for a convergence of the SaS

method [23, 24].

The relation between the temperature T and the

temperature gradient C is given by

C ¼ rT: ð3Þ

In a component form, it can be written as

Ca ¼
1

Aaca
T;a; C3 ¼ T3; ð4Þ

where the symbol (…),i stands for the partial deriva-

tives with respect to coordinates hi.
We start now with the first and second assumptions

of the proposed thermoelastic laminated shell formu-

lation. Let us assume that the temperature and

temperature gradient fields are distributed through

the thickness of the nth layer as follows:

T ðnÞ ¼
X
in

LðnÞinT ðnÞin ; h½n�1�
3 � h3 � h½n�3 ; ð5Þ

CðnÞ
i ¼

X
in

LðnÞinCðnÞin
i ; h½n�1�

3 � h3 � h½n�3 ; ð6Þ

where T ðnÞinðh1; h2Þ are the temperatures of SaS of the

nth layer XðnÞin ; CðnÞin
i ðh1; h2Þ are the components of

the temperature gradient at the same SaS; LðnÞinðh3Þ are
the Lagrange polynomials of degree In - 1 defined as

T ðnÞin ¼ TðhðnÞin3 Þ; ð7Þ

CðnÞin
i ¼ CiðhðnÞin3 Þ; ð8Þ

LðnÞin ¼
Y
jn 6¼in

h3 � hðnÞjn3

hðnÞin3 � hðnÞjn3

: ð9Þ

The use of Eqs. (4), (5), (7) and (8) yields

CðnÞin
a ¼ 1

Aac
ðnÞin
a

T ðnÞin
;a ; ð10Þ

CðnÞin
3 ¼

X
jn

MðnÞjnðhðnÞin3 ÞTðnÞjn ; ð11Þ
Fig. 1 Geometry of the laminated shell
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where MðnÞjn ¼ L
ðnÞjn
;3 are the derivatives of the

Lagrange polynomials, which are calculated at SaS

as follows:

MðnÞjn hðnÞin3

� �
¼ 1

hðnÞjn3 � hðnÞin3

Y
kn 6¼in; jn

hðnÞin3 � hðnÞkn3

hðnÞjn3 � hðnÞkn3

for jn 6¼ in;

MðnÞin hðnÞin3

� �
¼ �

X
jn 6¼ in

MðnÞjn hðnÞin3

� �
: ð12Þ

It is seen from Eq. (11) that the transverse components

of the temperature gradient on SaS of the nth layer

CðnÞin
3 are represented as a linear combination of

temperatures of SaS T ðnÞjn of the same layer.

3 Description of displacement and strain fields

A position vector of the shell is written as

R ¼ rþ h3e3, where r ¼ rðh1; h2Þ is the position

vector of any point of the middle surface. The base

vectors in the shell body are given by

ga ¼ R;a ¼ Aacaea; g3 ¼ R;3 ¼ e3: ð13Þ

The position vector of the deformed shell is defined

as

�R ¼ Rþ u; ð14Þ

where u is the displacement vector, which is measured

in accordance with the total Lagrangian formulation

from the initial configuration to the current configu-

ration directly. The base vectors in the current shell

configuration are written as

�gi ¼ �R;i ¼ gi þ u;i: ð15Þ

Next, we represent the displacement vector in an

orthonormal basis ei as follows:

u ¼ uiei: ð16Þ

Here and in the following developments, the summa-

tion on repeated Latin indices is implied. Using

Eq. (16) and well-known formulas for the derivatives

of orthonormal base vectors ei with respect to

curvilinear coordinates ha [24], one obtains

1

Aa
u;a ¼ kiaei; ð17Þ

where kia are the strain parameters expressed in terms

of displacements as

kaa ¼
1

Aa
ua;a þ Baub þ kau3 for b 6¼ a;

kba ¼
1

Aa
ub;a � Baua for b 6¼ a;

k3a ¼
1

Aa
u3;a � kaua; Ba ¼

1

AaAb
Aa;b for b 6¼ a:

ð18Þ

The Green–Lagrange strain tensor in an orthogonal

curvilinear coordinate system [24] can be written as

2eij ¼
1

AiAjcicj
ð�gi � �gj � gi � gjÞ; ð19Þ

where one should set A3 = 1 and c3 = 1. Substituting

base vectors (13) and (15) into the strain–displacement

relationships (19), taking into consideration (17) and

discarding non-linear terms, we arrive at the compo-

nent form of these relationships

2eab ¼ 1

cb
kab þ

1

ca
kba;

2ea3 ¼
1

ca
k3a þ ua;3; e33 ¼ u3;3: ð20Þ

The following step consists in a choice of the

suitable approximation of displacements and strains

through the thickness of the nth layer. It is apparent

that displacement and strain distributions should be

chosen similar to temperature and temperature gradi-

ent distributions (5) and (6). Thus, the third and fourth

assumptions of the proposed thermoelastic laminated

FG shell formulation are

u
ðnÞ
i ¼

X
in

LðnÞinu
ðnÞin
i ; h½n�1�

3 � h3 � h½n�3 ; ð21Þ

eðnÞij ¼
X
in

LðnÞineðnÞinij ; h½n�1�
3 � h3 � h½n�3 ; ð22Þ

where u
ðnÞin
i h1; h2ð Þ and eðnÞinij h1; h2ð Þ are the displace-

ments and strains of SaS given by

u
ðnÞin
i ¼ ui hðnÞin3

� �
; ð23Þ

eðnÞinij ¼ eij hðnÞin3

� �
: ð24Þ
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The use of Eqs. (20), (21), (23) and (24) leads to the

following strain–displacement relationships:

2eðnÞinab ¼ 1

c
ðnÞin
b

kðnÞinab þ 1

c
ðnÞin
a

kðnÞinba ;

2eðnÞina3 ¼ 1

c
ðnÞin
a

kðnÞin3a þ bðnÞina ; eðnÞin33 ¼ bðnÞin3 ; ð25Þ

where kðnÞinia h1; h2ð Þ are the strain parameters of SaS;

bðnÞini h1; h2ð Þ are the values of the derivative of

displacements with respect to thickness coordinate

h3 at SaS defined as

kðnÞinaa ¼ kaa hðnÞin3

� �
¼ 1

Aa
uðnÞina;a þ Bau

ðnÞin
b þ kau

ðnÞin
3

for b 6¼ a;

kðnÞinba ¼ kba hðnÞin3

� �
¼ 1

Aa
u
ðnÞin
b;a � Bau

ðnÞin
a for

b 6¼ a;

kðnÞin3a ¼ k3a hðnÞin3

� �
¼ 1

Aa
u
ðnÞin
3;a � kau

ðnÞin
a ; ð26Þ

bðnÞini ¼ ui;3 hðnÞin3

� �
¼

X
jn

MðnÞjn hðnÞin3

� �
u
ðnÞjn
i : ð27Þ

As can be seen from Eq. (27), the key functions bðnÞini

of the thermoelastic laminated shell formulation are

represented as a linear combination of displacements

of SaS of the nth layer u
ðnÞjn
i .

Remark 2 Strain–displacement relationships (25)–

(27) exactly represent all rigid-body motions of the

laminated shell in any surface curvilinear coordinates.

The proof of this statement can be given by using the

results [24].

4 Variational formulation of heat conduction

problem

The variational equation for the thermal laminated FG

shell is written as

dJ ¼ 0; ð28Þ

where J is the basic functional of the heat conduction

theory given by

J ¼ 1

2

ZZ

X

X
n

Zh½n�3

h½n�1�
3

q
ðnÞ
i CðnÞ

i A1A2c1c2dh1dh2dh3

�
ZZ

�X

TQndX; ð29Þ

where qi
(n) are the components of the heat flux vector of

the nth layer; Qn is the specified heat flux on the

boundary surface �X ¼ X½0� þ X½N� þ R, where R is the

edge boundary surface of a shell.

Substituting Eq. (6) in Eq. (29) and introducing

heat flux resultants

R
ðnÞin
i ¼

Zh½n�3

h½n�1�
3

q
ðnÞ
i LðnÞinc1c2dh3; ð30Þ

one obtains

J ¼ 1

2

ZZ

X

X
n

X
in

R
ðnÞin
i CðnÞin

i A1A2dh1dh2

�
ZZ

�X

TQndX: ð31Þ

As constitutive equations, we accept the Fourier’s

heat conduction equations

q
ðnÞ
i ¼ �k

ðnÞ
ij CðnÞ

j ; h½n�1�
3 � h3 � h½n�3 ; ð32Þ

where kij
(n) are the thermal conductivities of the nth

layer.

Next, we introduce the fifth assumption of the

proposed laminatedFGshell formulation.Let us assume

that thermal conductivities of the nth layer are dis-

tributed through the thickness of the shell as follows:

k
nð Þ
ij ¼

X
in

LðnÞin k
nð Þin
ij ; h½n�1�

3 � h3 � h½n�3 ð33Þ

that is extensively utilized in this paper, where k
nð Þin
ij

are the values of thermal conductivities on SaS of the

nth layer.

The use of Eqs. (6), (32) and (33) into Eq. (30)

leads to

R
ðnÞin
i ¼ �

X
jn; kn

KðnÞinjnknk
ðnÞjn
ij CðnÞkn

j ; ð34Þ

where
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KðnÞinjnkn ¼
Zh½n�3

h½n�1�
3

LðnÞinLðnÞjnLðnÞknc1c2dh3: ð35Þ

5 Variational formulation of thermoelastic shell

problem

The variational equation for the thermoelastic lami-

nated FG shell in the case of conservative loading [19]

can be written as

dP ¼ 0; ð36Þ

where

P ¼
ZZ

X

X
n

Zh½n�3

h½n�1�
3

FðnÞA1A2c1c2dh1dh2dh3 �W ;

ð37Þ

FðnÞ ¼ 1

2
rðnÞij eðnÞij � gðnÞHðnÞ

� �
; ð38Þ

W ¼
ZZ

X

c
½N�
1 c

½N�
2 pþi u

½N�
i � c

½0�
1 c

½0�
2 p�i u

½0�
i

� �
A1A2dh1dh2

þWR;

ð39Þ

where F(n) is the free-energy density of the nth layer;

rij
(n) are the components of the stress tensor of the nth

layer; g(n) is the entropy density of the nth layer;

ui
[0] = ui

(1)1 and u
½N�
i ¼ u

ðNÞIN
i are the displacements of

the bottom and top surfaces X½0� and X½N�; ca
[0] = 1 ?

kah3
[0] and ca

[N] = 1 ? kah3
[N] are the components of the

shifter tensor at the bottom and top surfaces; pi
- and pi

?

are the loads acting on the bottom and top surfaces;WR

is the work done by external loads applied to the edge

surface R; HðnÞ is the temperature rise from the initial

reference temperature T0 defined as

HðnÞ ¼ TðnÞ � T0: ð40Þ

Substituting the strain distribution (22) and tem-

perature distribution

HðnÞ ¼
X
in

LðnÞinHðnÞin ; h½n�1�
3 � h3 � h½n�3 ; ð41Þ

which follows from Eqs. (5) and (40) into Eqs. (37)

and (38), and introducing stress resultants

H
ðnÞin
ij ¼

Zh½n�3

h½n�1�
3

rðnÞij LðnÞin c1c2dh3 ð42Þ

and entropy resultants

SðnÞin ¼
Zh½n�3

h½n�1�
3

gðnÞLðnÞin c1c2dh3; ð43Þ

one derives

P ¼ 1

2

ZZ

X

X
n

X
in

H
ðnÞin
ij eðnÞinij � SðnÞinHðnÞin

� �
A1A2dh1dh2 �W:

ð44Þ

For simplicity, we consider the case of linear

thermoelastic materials. Therefore, the constitutive

equations [38] are expressed as follows:

rðnÞij ¼ C
ðnÞ
ijk‘e

ðnÞ
k‘ � cðnÞij HðnÞ; h½n�1�

3 � h3 � h½n�3 ; ð45Þ

gðnÞ ¼ cðnÞij eðnÞij þ vðnÞHðnÞ; h½n�1�
3 � h3 � h½n�3 ; ð46Þ

where Cijkl
(n) are the elastic constants of the nth layer;

cij
(n) are the thermal stress coefficients of the nth layer;

v(n) is the entropy-temperature coefficient given by

vðnÞ ¼ qðnÞcðnÞv =T0; ð47Þ

where q(n) and cðnÞv are the mass density and the specific

heat per unit mass of the nth layer at constant strain.

Finally, we introduce the sixth assumption of the

thermoelastic FG shell formulation. Assume that

material constants are distributed through the thick-

ness of the nth layer as accepted throughout the paper

C
ðnÞ
ijkl ¼

X
in

LðnÞinC
ðnÞin
ijkl ; h½n�1�

3 � h3 � h½n�3 ; ð48Þ

cðnÞij ¼
X
in

LðnÞincðnÞinij ; h½n�1�
3 � h3 � h½n�3 ; ð49Þ

vðnÞ ¼
X
in

LðnÞinvðnÞin ; h½n�1�
3 � h3 � h½n�3 ; ð50Þ

where C
ðnÞin
ijkl , cðnÞinij and vðnÞin are the values of material

constants on SaS of the nth layer.
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Substituting constitutive Eqs. (45) and (46) respec-

tively in Eqs. (42) and (43), and taking into account

the through-thickness distributions (22), (41), (48),

(49) and (50), we arrive at the final expressions for

stress and entropy resultants

H
ðnÞin
ij ¼

X
jn; kn

KðnÞinjnkn C
ðnÞjn
ijk‘ eðnÞknk‘ � cðnÞjnij HðnÞkn

� �
;

ð51Þ

SðnÞin ¼
X
jn; kn

KðnÞinjnkn cðnÞjnij eðnÞknk‘ þ vðnÞjnHðnÞkn
� �

;

ð52Þ

where KðnÞinjnkn are the definite integrals defined by

Eq. (35).

6 Analytical solution for laminated FG cylindrical

panels in cylindrical bending

In this section, we study a laminated anisotropic FG

cylindrical panel in cylindrical bending subjected to

thermomechanical loading. The boundary conditions

for the simply supported shell with edges maintained

at the reference temperature are written as

rðnÞ11 ¼ rðnÞ12 ¼ u
ðnÞ
3 ¼ HðnÞ ¼ 0 at h1 ¼ 0 and

h1 ¼ L;

ð53Þ

where h1 is the circumferential coordinate; L = uR is

the length of the middle circular arc; R is the radius; u
is the arc angle. To satisfy the boundary conditions, we

search for the analytical solution by a method of the

Fourier series expansion

HðnÞin ¼
X
r

HðnÞin
r sin

rph1
L

; ð54Þ

u
ðnÞin
1 ¼

X
r

u
ðnÞin
1r cos

rph1
L

;

u
ðnÞin
2 ¼

X
r

u
ðnÞin
2r cos

rph1
L

;

u
ðnÞin
3 ¼

X
r

u
ðnÞin
3r sin

rph1
L

; ð55Þ

where r is the wave number. The external loads are

also expanded in Fourier series.

The use of Fourier series (54) and (55) in Eqs. (10),

(11), (25), (26), (27), (31), (34), (39), (40), (44), (51)

and (52) yields

J ¼
X
r

Jr HðnÞin
r

� �
; ð56Þ

P ¼
X
r

Pr u
ðnÞin
ir ;HðnÞin

r

� �
: ð57Þ

Invoking variational Eqs. (28), (56) and (36), (57), we

arrive at the following systems of linear algebraic

equations:

oJr

oHðnÞin
r

¼ 0; ð58Þ

oPr

ou
ðnÞin
ir

¼ 0 ð59Þ

of orders K and 3 K, where K =
P

n In - N ? 1 is the

total number of SaS. First, we solve the linear system

of algebraic Eqs. (58) using the method of Gaussian

elimination. Then the linear system (59) is solved by

the same method.

The described algorithm was performed with the

Symbolic Math Toolbox, which incorporates sym-

bolic computations into the numeric environment of

MATLAB. This permits the derivation of analytical

solutions for laminated anisotropic cylindrical panels

in cylindrical bending in the framework of the SaS

formulation, which asymptotically approach the 3D

exact solutions of thermoelasticity as In ? ?.

6.1 Single-layer metal/ceramic composite

cylindrical panel

Consider a FG composite cylindrical panel fabricated

by mixing metal and ceramic phases. The simply

supported shell is subjected on the top surface by the

sinusoidally distributed temperature whereas the bot-

tom surface is maintained at the reference temperature

293 K, that is,

Hþ ¼ H0 sin
ph1
L

; H� ¼ 0; ð60Þ

where H0 ¼ 1K. The geometric parameters of the

shell are chosen to be R ¼ 1m, u = p/2 and

L ¼ p=2m. It is supposed that the metal phase is the

aluminum with material properties Em ¼ 7� 1010 Pa,
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mm ¼ 0:3, am ¼ 23:4� 10�6 1=K, km ¼ 233W=mK,

qm ¼ 2707Kg=m3 and cm ¼ 896 J=KgK, whereas

material properties of the thermal ceramic (SiC)

barrier areEc = 4.27 9 1011 Pa, mc = 0.17,ac = 4.3 9

10-6 1/K, kc = 65 W/mK, qc ¼ 3100Kg=m3 and

cc ¼ 670 J=KgK. The material properties of metal

and ceramic phases are presented in papers [47, 48].

For evaluating the effective material properties

through the thickness of the FG shell, the self-

consistent method is utilized. The shear modulus

[15] is given implicitly by

VmKm

Km þ 4G=3
þ VcKc

Kc þ 4G=3

� �

þ 5
VmGc

G� Gc

þ VcGm

G� Gm

� �
þ 2

¼ 0; ð61Þ

where Km, Kc and Gm, Gc are the bulk and shear

moduli of metal and ceramic phases; Vm and Vc are the

volume fractions of metal and ceramic phases defined

as

Km ¼ Em

3ð1� 2mmÞ
; Kc ¼

Ec

3ð1� 2mcÞ
; ð62Þ

Gm ¼ Em

2ð1þ mmÞ
; Gc ¼

Ec

2ð1þ mcÞ
; ð63Þ

Vm ¼ 1� Vc; Vc ¼ V�
c þ Vþ

c � V�
c

� �
ð0:5þ zÞc;

z ¼ h3=h;

ð64Þ

where Vc
- and Vc

? are the volume fractions of the

ceramic on the bottom and top surfaces; c is the

material gradient index. Solving the quartic Eq. (61),

which has precisely one positive root, we can find

G and then the bulk modulus from the following

formula [15]:

K ¼ Vm

Km þ 4G=3
þ Vc

Kc þ 4G=3

� 	�1

�4G=3: ð65Þ

The thermal conductivity [13] is also given implicitly

by

Vmðkm � kÞ
km þ 2k

þ Vcðkc � kÞ
kc þ 2k

¼ 0: ð66Þ

The thermal expansion coefficient [30, 40] is defined

as

a ¼ am þ ðac � amÞð1=K � 1=KmÞ
1=Kc � 1=Km

: ð67Þ

The product cq can be easily found using the rule of

mixture [48]

cq ¼ cmqmVm þ ccqcVc: ð68Þ

To compare the results derived with the exact solution

of thermoelasticity [36], we accept V�
c ¼ 0:2, Vþ

c ¼
0:8 and c = 2, and introduce dimensionless variables

at crucial points as follows:

�u1 ¼ 103hu1ð0; zÞ=L2amH0;

�u3 ¼ 103hu3ðL=2; zÞ=L2amH0;

�rii ¼ 103hriiðL=2; zÞ=LEmamH0;

�r13 ¼ 103hr13ð0; zÞ=LEmamH0;

�H ¼ HðL=2; zÞ=H0; �q3 ¼ �hq3ðL=2; zÞ=kmH0;

�g ¼ gðL=2; zÞ=Ema
2
mH0; z ¼ h3=h:

Tables 1 and 2 show the results of the convergence

study due to increasing the number of SaS inside the

shell body. A comparison with the exact solution [36]

for L/h = 10 is presented. It is seen that the SaS

formulation gives the possibility to find basic shell

variables with a specified accuracy (five right digits) by

using the sufficiently large number of SaS. Figure 2

displays distributions of the temperature, heat flux,

transverse displacement and stresses through the thick-

ness of the cylindrical panel for different values of the

ratio L/h employing 15 SaS. These results demonstrate

convincingly the high potential of the developed SaS

formulation because the boundary conditions on the

bottom and top surfaces of the cylindrical panel for

transverse stresses are satisfied exactly.

6.2 Angle-ply cylindrical panel covered

with metal/ceramic layer

Here, we study a two-layer cylindrical panel [45/-45]

composed of the graphite/epoxy composite and cov-

ered with the metal/ceramic barrier on its top surface.

Thus, a three-layer shell with the stacking sequence

[45/-45/FGM] and ply thicknesses [0.25 h/0.25 h/

0.5 h] is considered. The mechanical properties of the

graphite/epoxy composite are taken as follows:

EL ¼ E0, ET ¼ E0=10, GLT ¼ E0=20, GTT ¼ E0=50,
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mLT ¼ mTT ¼ 0:25, aL ¼ a0, aT ¼ 7:2a0, kL ¼ 100k0,

kT ¼ k0, q ¼ 1800Kg=m3 and cv ¼ 900 J=KgK,

where E0 ¼ 2� 1011 Pa, a0 ¼ 5� 10�6 1=K and

k0 ¼ 0:5W=mK. The mechanical properties of the

metal/ceramic composite are given in Sect. 6.1.

To evaluate the effective material properties

through the thickness of the metal/ceramic barrier,

the Mori–Tanaka scheme [4, 14, 31] is invoked

K ¼ Km þ VcðKc � KmÞ
1þ VmðKc � KmÞ=ðKm þ 4Gm=3Þ

;

ð69Þ

G ¼ Gm þ VcðGc � GmÞ
1þ VmðGc � GmÞ=ðGm þ fmÞ

;

fm ¼ Gmð9Km þ 8GmÞ
6ðKm þ 2GmÞ

;
ð70Þ

k ¼ km þ Vcðkc � kmÞ
1þ Vmðkc � kmÞ=ð3kmÞ

ð71Þ

with a specific distribution of the volume fraction of

the ceramic phase

Vc ¼ V�
c þ Vþ

c � V�
c

� �
ð2zÞc; 0� z� 0:5;

z ¼ h3=h;
ð72Þ

where Vc
- = 0, Vc

? = 0.5 and c = 2. The thermal

expansion coefficient a and the product cq can be

found by Eqs. (67) and (68).The panel is loaded on the

top surface by the sinusoidally distributed temperature

according to Eq. (60) withH0 ¼ 1K and T0 ¼ 293K.

The geometric parameters of the shell are taken to be

R ¼ 1m, u = p/2 and L ¼ p=2m. To analyze the

derived results efficiently, we introduce the following

dimensionless variables at crucial points:

�u1 ¼ 10hu1ð0; zÞ=R2amH0;
�u2 ¼ 10u2ð0; zÞ=RamH0;

�u3 ¼ 10hu3ðL=2; zÞ=R2amH0;

�r11 ¼ 10r11ðL=2; zÞ=EmamH0;
�r12 ¼ 10r12ðL=2; zÞ=EmamH0;

�ra3 ¼ 102Rra3ð0; zÞ=hEmamH0;

�r33 ¼ 102Rr33ðL=2; zÞ=hEmamH0;

Table 1 Results for a single-layer metal/ceramic cylindrical panel in cylindrical bending for L/h = 2

I1 �u1ð0Þ �u3ð0Þ �r11ð0Þ �r22ð0Þ �r13ð0Þ �r13ð0:25Þ �r33ð0Þ �Hð0Þ �q3ð�0:5Þ �gð0Þ

3 -28.286 16.389 -87.970 -258.06 -5.1509 15.604 -79.022 0.37950 0.42233 78.962

5 -32.789 9.2840 -60.883 -232.58 -0.54364 24.018 -8.4753 0.37908 0.64087 79.025

7 -32.793 9.5783 -60.652 -232.04 0.66682 19.708 -8.5118 0.37999 0.64503 79.215

9 -32.781 9.5611 -60.664 -232.96 0.83004 19.086 -8.0702 0.38004 0.64824 79.226

11 -32.780 9.5611 -60.686 -232.98 0.87520 19.139 -8.1265 0.38003 0.64863 79.225

13 -32.780 9.5612 -60.687 -232.98 0.86928 19.124 -8.1280 0.38003 0.64873 79.225

15 -32.780 9.5612 -60.687 -232.98 0.86979 19.126 -8.1283 0.38003 0.64876 79.225

17 -32.780 9.5612 -60.687 -232.98 0.86980 19.126 -8.1282 0.38003 0.64877 79.225

Table 2 Results for a single-layer metal/ceramic cylindrical panel in cylindrical bending for L/h = 10

I1 �u1ð0Þ �u3ð0Þ �r11ð0Þ �r22ð0Þ �r13ð0Þ �r13ð0:25Þ �r33ð0Þ �Hð0Þ �q3ð�0:5Þ �gð0Þ

3 8.1080 32.978 -19.939 -58.384 -0.47111 0.78287 -19.737 0.42497 0.57060 88.406

5 7.3645 31.439 -12.309 -50.632 -0.17924 1.0392 -1.0593 0.41657 0.65946 86.856

7 7.4339 31.593 -11.928 -50.288 -0.15207 0.78309 -0.016783 0.41678 0.66600 86.910

9 7.4320 31.589 -11.916 -50.276 -0.14938 0.76662 0.019898 0.41679 0.66610 86.912

11 7.4321 31.589 -11.917 -50.277 -0.14928 0.76741 0.016781 0.41679 0.66608 86.912

13 7.4321 31.589 -11.918 -50.277 -0.14933 0.76720 0.016023 0.41679 0.66608 86.912

15 7.4321 31.589 -11.918 -50.277 -0.14933 0.76719 0.015958 0.41679 0.66608 86.912

17 7.4321 31.589 -11.918 -50.277 -0.14933 0.76720 0.015962 0.41679 0.66608 86.912

Exact 7.4320 31.589 -11.917 -50.277 -0.14933 0.76719 0.015962 0.41678 0.66608
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�H ¼ HðL=2; zÞ=H0; �q3 ¼ �10Rq3ðL=2; zÞ=kmH0;

�g ¼ gðL=2; zÞ=Ema
2
mH0; z ¼ h3=h:

The data listed in Tables 3 and 4 show that the SaS

method permits the derivation of analytical solutions

for thick angle-ply FG cylindrical panels with a

prescribed accuracy using the sufficient number of

SaS. Note that the transverse components of the heat

flux vector and the stress tensor are calculated at the

interface between the shell and the metal/ceramic

barrier and, therefore, their both values are presented.

As turned out, the SaS method provides five right

digits for these functions at the interface taking 14 SaS

inside the layer, i.e. 40 SaS inside the moderately thick

shell. Figures 3 and 4 display through-thickness

distributions of the temperature, displacements, heat

flux and stresses for different slenderness ratios R/h by

Fig. 2 Through-thickness

distributions of the

temperature, heat flux,

transverse displacement and

stresses for a metal/ceramic

cylindrical panel: SaS

solution (solid line) with

I1 = 15 and exact solution

(circle) [36]
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choosing 13 SaS for each layer. As can be seen, the

boundary conditions for transverse stresses on the

bottom and top surfaces and the continuity conditions

for a heat flux and transverse stresses at both interfaces

are satisfied correctly.

7 Analytical solution for laminated FG cylindrical

shells

In this section, we consider a laminated orthotropic

cylindrical shell subjected to thermal and mechanical

Table 3 Results for a three-layer cylindrical panel [45/-45/FGM] in cylindrical bending for R/h = 2

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ �Hð�0:125Þ �q3ð0Þ �gð�0:125Þ

3 -1.9222 2.6979 8.9220 0.49532 -10.533 3.0697 -9.1718 0.35077 0.23852 51.348

-2.1994 3.3288 37.686 0.076062

5 -1.9078 2.8350 9.2064 0.50292 -9.8213 3.4321 2.6222 0.35297 0.26868 51.605

-10.668 3.4514 3.2087 0.21965

7 -1.9083 2.8273 9.2168 0.50240 -9.7972 3.4434 2.7407 0.35334 0.27040 51.658

-9.7341 3.4420 2.7462 0.27258

9 -1.9083 2.8273 9.2176 0.50240 -9.7986 3.4416 2.7475 0.35337 0.27027 51.663

-9.7877 3.4416 2.7425 0.27258

11 -1.9083 2.8273 9.2176 0.50240 -9.7990 3.4415 2.7482 0.35336 0.27025 51.663

-9.7954 3.4415 2.7466 0.27035

13 -1.9083 2.8273 9.2176 0.50240 -9.7991 3.4414 2.7483 0.35336 0.27025 51.663

-9.7978 3.4414 2.7477 0.27029

15 -1.9083 2.8273 9.2176 0.50240 -9.7991 3.4414 2.7484 0.35336 0.27025 51.663

-9.7986 3.4414 2.7481 0.27027

17 -1.9083 2.8273 9.2176 0.50240 -9.7991 3.4414 2.7484 0.35336 0.27025 51.663

-9.7989 3.4414 2.7482 0.27026

Table 4 Results for a three-layer cylindrical panel [45/-45/FGM] in cylindrical bending for R/h = 10

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ �Hð�0:125Þ �q3ð0Þ �gð�0:125Þ

3 0.82088 2.8152 10.685 0.30850 -11.586 1.4213 1.4269 0.72113 0.48153 105.24

-3.6706 1.9928 253.33 0.31189

5 0.86170 2.9161 10.850 0.32499 -11.359 1.9974 5.1356 0.72110 0.48578 105.23

-11.962 2.0054 6.2001 0.47310

7 0.85926 2.9100 10.855 0.32399 -11.373 1.9955 5.1404 0.72110 0.48582 105.23

-11.349 1.9952 5.2629 0.48540

9 0.85927 2.9101 10.857 0.32400 -11.373 1.9951 5.1407 0.72110 0.48582 105.23

-11.370 1.9951 5.1486 0.48580

11 0.85927 2.9101 10.857 0.32400 -11.373 1.9951 5.1407 0.72110 0.48582 105.23

-11.372 1.9951 5.1406 0.48582

13 0.85927 2.9101 10.857 0.32400 -11.373 1.9951 5.1407 0.72110 0.48582 105.23

-11.373 1.9951 5.1406 0.48582

15 0.85927 2.9101 10.857 0.32400 -11.373 1.9951 5.1407 0.72110 0.48582 105.23

-11.373 1.9951 5.1407 0.48582

17 0.85927 2.9101 10.857 0.32400 -11.373 1.9951 5.1407 0.72110 0.48582 105.23

-11.373 1.9951 5.1407 0.48582
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loading. Let the middle surface of the radius R be

described by axial and circumferential coordinates h1
and h2. In this case, the boundary conditions for a

simply supported cylindrical shell with the edges

maintained at the reference temperature can be written

as

rðnÞ11 ¼ u
ðnÞ
2 ¼ u

ðnÞ
3 ¼ HðnÞ ¼ 0 at h1 ¼ 0 and

h1 ¼ a;

rðnÞ22 ¼ u
ðnÞ
1 ¼ u

ðnÞ
3 ¼ HðnÞ ¼ 0 at h2 ¼ 0 and

h2 ¼ b;

ð73Þ

where a is the length of the shell; b ¼ uR is the length

of the circular arc and u is the arc angle. To satisfy the

boundary conditions, we search for the analytical

solution of the problem by a method of the double

Fourier series expansion

HðnÞin ¼
X
r;s

HðnÞin
rs sin

rph1
a

sin
sph2
b

; ð74Þ

u
ðnÞin
1 ¼

X
r;s

u
ðnÞin
1rs cos

rph1
a

sin
sph2
b

;

u
ðnÞin
2 ¼

X
r;s

u
ðnÞin
2rs sin

rph1
a

cos
sph2
b

;

u
ðnÞin
3 ¼

X
r;s

u
ðnÞin
3rs sin

rph1
a

sin
sph2
b

; ð75Þ

where r and s are the wave numbers in h1- and h2-
directions. The external mechanical loads are also

expanded in double Fourier series.

Substituting Fourier series (74) and (75) in

Eqs. (10), (11), (25), (26), (27), (31), (34), (39) (40),

(44), (51) and (52), one obtains

J ¼
X
r;s

Jrs HðnÞin
rs

� �
; ð76Þ

Fig. 3 Through-thickness

distributions of the

temperature and

displacements for a three-

layer cylindrical panel

[45/-45/FGM] with

I1 = I2 = I3 = 13
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P ¼
X
r;s

Prs u
ðnÞin
irs ;HðnÞin

rs

� �
: ð77Þ

Using variational Eqs. (28), (76) and (36), (77), we

arrive at two systems of linear algebraic equations

oJrs

oHðnÞin
rs

¼ 0; ð78Þ

oPrs

ou
ðnÞin
irs

¼ 0 ð79Þ

of orders K and 3K, where K is the total number of SaS

defined in Sect. 6. The linear systems (78) and (79) are

solved independently by the Gaussian elimination

method.

Fig. 4 Through-thickness

distributions of the heat flux

and stresses for a three-layer

cylindrical panel [45/-45/

FGM] with

I1 = I2 = I3 = 13

Table 5 Results for a single-layer metal/ceramic cylindrical shell for R/h = 2

I1 �u1 0:5ð Þ �u2 0:5ð Þ �u3 0:5ð Þ �r11 0:5ð Þ �r22 0:5ð Þ �r12 0:5ð Þ �r13 0ð Þ �r23 0ð Þ �r33 0ð Þ �H 0ð Þ �q3 �0:5ð Þ �g 0ð Þ

3 -2.5424 -1.5393 30.845 -5.3359 3.8713 -4.4975 0.56580 5.9348 -25.316 0.43434 0.73737 94.251

5 -2.5397 -1.5852 30.872 -6.1923 3.1512 -4.5245 1.5326 11.283 -4.0027 0.43435 0.90909 94.431

7 -2.5355 -1.5843 30.806 -6.1897 3.1388 -4.5183 1.3799 11.256 -4.0410 0.43461 0.91050 94.484

9 -2.5355 -1.5844 30.806 -6.1890 3.1395 -4.5183 1.3638 11.259 -4.0376 0.43463 0.91186 94.490

11 -2.5355 -1.5843 30.806 -6.1891 3.1395 -4.5183 1.3676 11.263 -4.0390 0.43463 0.91199 94.490

13 -2.5355 -1.5843 30.806 -6.1892 3.1394 -4.5183 1.3667 11.262 -4.0389 0.43463 0.91202 94.490

15 -2.5355 -1.5843 30.806 -6.1892 3.1393 -4.5183 1.3670 11.263 -4.0387 0.43463 0.91203 94.490

17 -2.5355 -1.5843 30.806 -6.1892 3.1393 -4.5183 1.3669 11.263 -4.0387 0.43463 0.91203 94.490
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The described algorithm was performed with the

Symbolic Math Toolbox of MATLAB. This technique

gives the possibility to derive the analytical solutions

for laminated FG cylindrical shells with a specified

accuracy, which asymptotically approach the 3D exact

solutions of thermoelasticity as In ? ?.

7.1 Two-phase composite cylindrical shell

under temperature loading

Consider a single-layer FG cylindrical shell fabricated

by mixing metal and ceramic phases. The shell is

subjected on the top surface to sinusoidally distributed

Table 6 Results for a single-layer metal/ceramic cylindrical shell for R/h = 10

I1 �u1 0:5ð Þ �u2 0:5ð Þ �u3 0:5ð Þ �r11 0:5ð Þ �r22 0:5ð Þ �r12 0:5ð Þ �r13 0ð Þ �r23 0ð Þ �r33 0ð Þ �H 0ð Þ �q3 �0:5ð Þ �g 0ð Þ

3 -5.1888 8.7907 24.985 -0.54135 4.5306 -2.5392 1.1008 2.3140 -133.41 0.44789 0.79156 97.474

5 -5.1689 8.6992 24.828 -1.7182 3.4238 -2.5682 3.1211 7.2866 -3.5090 0.44497 0.87090 97.050

7 -5.1658 8.6957 24.815 -1.6988 3.4379 -2.5656 3.1471 7.3990 -2.3474 0.44492 0.87511 97.042

9 -5.1658 8.6956 24.815 -1.6987 3.4380 -2.5656 3.1452 7.3997 -2.2913 0.44492 0.87532 97.043

11 -5.1658 8.6956 24.815 -1.6987 3.4380 -2.5656 3.1455 7.4002 -2.2919 0.44492 0.87533 97.043

13 -5.1658 8.6956 24.815 -1.6987 3.4380 -2.5656 3.1454 7.4001 -2.2918 0.44492 0.87533 97.043

15 -5.1658 8.6956 24.815 -1.6987 3.4380 -2.5656 3.1455 7.4001 -2.2918 0.44492 0.87533 97.043

Fig. 5 Through-thickness

distributions of the

temperature, heat flux and

displacements for a metal/

ceramic cylindrical shell

with I1 = 15
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temperature loading, whereas the bottom surface is

maintained at the reference temperature 293 K, that is,

Hþ ¼ H0 sin
ph1
a

sin
ph2
b

; H� ¼ 0; ð80Þ

where H0 ¼ 1K. The geometric parameters of the

shell are a ¼ 4m, b ¼ p=2m, R ¼ 1m and u = p/2.
The material properties of metal and ceramic phases

are presented in Sect. 6.1. For evaluating the effective

material properties through the thickness of the FG

shell, the Mori–Tanaka method with the use of

Eqs. (62)–(64) and (67)–(71) is utilized.

For numerical calculations, we accept Vc
- = 0,

Vc
? = 0.5 and c = 2 into Eq. (64) and introduce

dimensionless variables

�u1 ¼ 10u1ð0; b=2; zÞ=RamH0;
�u2 ¼ 10u2ða=2; 0; zÞ=RamH0;

Fig. 6 Through-thickness

distributions of stresses for a

metal/ceramic cylindrical

shell with I1 = 15
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�u3 ¼ 100hu3ða=2; b=2; zÞ=R2amH0;

�raa ¼ 10raaða=2; b=2; zÞ=EmamH0;
�r12 ¼ 10r12ð0; 0; zÞ=EmamH0;

�r13 ¼ 100Rr13ð0; b=2; zÞ=hEmamH0;
�r23 ¼ 100Rr23ða=2; 0; zÞ=hEmamH0;

�r33 ¼ 100Rr33ða=2; b=2; zÞ=hEmamH0;

�H ¼ Hða=2; b=2; zÞ=H0;
�q3 ¼ �hq3ða=2; b=2; zÞ=kmH0;

�g ¼ gða=2; b=2; zÞ=Ema
2
mH0; z ¼ h3=h:

The results of the convergence study are presented

in Tables 5 and 6. It is seen that the SaS formulation

provides five right digits (in fact, the better accuracy

is possible) for all basic variables of thick FG

cylindrical shells utilizing the sufficiently large

number of SaS. Figures 5 and 6 show distributions

of the temperature, heat flux, displacements and

stresses through the thickness of the shell for

different values of the slenderness ratio R/h by

choosing 15 SaS inside the shell body. One can see

that boundary conditions for the heat flux and

transverse stresses on the bottom and top surfaces

are satisfied again exactly.

8 Conclusions

The SaS formulation for the 3D analysis of steady-

state problems for thermoelastic laminated FG shells

has been developed. This formulation is based on

choosing the SaS located at Chebyshev polynomial

nodes throughout the layers. Such choice permits one

to minimize uniformly the error due to Lagrange

interpolation. The SaS formulation for laminated

orthotropic and anisotropic shells is based on 3D

constitutive equations and gives the possibility to

obtain the analytical solutions for FG shells with a

prescribed accuracy, which asymptotically approach

the 3D exact solutions of thermoelasticity as the

number of SaS goes to infinity.
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