

Analytical and Finite Element Modeling of Laminated and Functionally Graded Shells

Gennady M. Kulikov

Laboratory of Intelligent Materials and Structures

Kinematic Description of Undeformed Shell

 $\Omega^{(n)1}, \Omega^{(n)2}, ..., \Omega^{(n)l_n}$ - sampling surfaces (**SaS**) $\theta_3^{(n)i_n}$ - transverse coordinates of SaS

 $\theta_3^{[n-1]}, \theta_3^{[n]}$ - transverse coordinates of interfaces

$$\theta_{3}^{(n)1} = \theta_{3}^{[n-1]}, \quad \theta_{3}^{(n)I_{n}} = \theta_{3}^{[n]}$$

$$\theta_{3}^{(n)m_{n}} = \frac{1}{2} (\theta_{3}^{[n-1]} + \theta_{3}^{[n]}) - \frac{1}{2} h_{n} \cos \left(\pi \frac{2m_{n} - 3}{2(I_{n} - 2)} \right)$$
(1)

n = 1, 2, ..., N; $i_n = 1, 2, ..., I_n;$ $m_n = 2, 3, ..., I_n - 1$ N - number of layers; I_n - number of SaS of the *n*th layer

Position Vectors and Base Vectors of SaS

$$\mathbf{R}^{(n)i_n} = \mathbf{r} + \theta_3^{(n)i_n} \mathbf{e}_3 \tag{2}$$

$$\mathbf{g}_{\alpha}^{(n)i_n} = \mathbf{R}_{,\alpha}^{(n)i_n} = A_{\alpha} c_{\alpha}^{(n)i_n} \mathbf{e}_{\alpha}, \qquad \mathbf{g}_{3}^{(n)i_n} = \mathbf{e}_{3}$$
(3)

 $\mathbf{r}(\theta_1, \theta_2)$ – position vector of midsurface Ω ; $\mathbf{e}_i(\theta_1, \theta_2)$ – orthonormal base vectors; $c_{\alpha}^{(n)i_n} = 1 + k_{\alpha}\theta_3^{(n)i_n}$ – components of shifter tensor at SaS; $A_{\alpha}(\theta_1, \theta_2)$, $k_{\alpha}(\theta_1, \theta_2)$ – Lamé coefficients and principal curvatures

Kinematic Description of Deformed Shell

Position Vectors of Deformed SaS

$$\overline{\mathbf{R}}^{(n)i_n} = \mathbf{R}^{(n)i_n} + \mathbf{u}^{(n)i_n}$$
(4)

$$\mathbf{u}^{(n)i_n} = \mathbf{u}(\theta_3^{(n)i_n}) \tag{5}$$

 $\textbf{u}~(\theta_1,~\theta_2,~\theta_3) - \text{displacement vector}$

 $\mathbf{u}^{(n)i_n}(\theta_1, \theta_2)$ – displacement vectors of SaS

Base Vectors of Deformed SaS

$$\overline{\mathbf{g}}_{\alpha}^{(n)i_n} = \overline{\mathbf{R}}_{,\alpha}^{(n)i_n} = \mathbf{g}_{\alpha}^{(n)i_n} + \mathbf{u}_{,\alpha}^{(n)i_n}, \qquad \overline{\mathbf{g}}_{3}^{(n)i_n} = \mathbf{e}_3 + \mathbf{\beta}^{(n)i_n}, \qquad \mathbf{\beta}^{(n)i_n} = \mathbf{u}_{,3}(\mathbf{\theta}_{3}^{(n)i_n}) \quad (6)$$

 $\boldsymbol{\beta}^{(n)i_n}(\theta_1, \theta_2)$ – values of derivative of displacement vector at SaS

Green-Lagrange Strain Tensor at SaS

$$2\varepsilon_{ij}^{(n)i_n} = \frac{1}{A_i A_j c_i^{(n)i_n} c_j^{(n)i_n}} (\overline{\mathbf{g}}_i^{(n)i_n} \cdot \overline{\mathbf{g}}_j^{(n)i_n} - \mathbf{g}_i^{(n)i_n} \cdot \mathbf{g}_j^{(n)i_n})$$
(7)

Linearized Strain Tensor at SaS

$$2\varepsilon_{\alpha\beta}^{(n)i_{n}} = \frac{1}{A_{\alpha}c_{\alpha}^{(n)i_{n}}} \mathbf{u}_{,\alpha}^{(n)i_{n}} \cdot \mathbf{e}_{\beta} + \frac{1}{A_{\beta}c_{\beta}^{(n)i_{n}}} \mathbf{u}_{,\beta}^{(n)i_{n}} \cdot \mathbf{e}_{\alpha}$$

$$2\varepsilon_{\alpha3}^{(n)i_{n}} = \mathbf{\beta}^{(n)i_{n}} \cdot \mathbf{e}_{\alpha} + \frac{1}{A_{\alpha}c_{\alpha}^{(n)i_{n}}} \mathbf{u}_{,\alpha}^{(n)i_{n}} \cdot \mathbf{e}_{3}, \quad \varepsilon_{33}^{(n)i_{n}} = \mathbf{\beta}^{(n)i_{n}} \cdot \mathbf{e}_{3}$$

$$(8)$$

Displacement Vectors of SaS in Orthonormal Basis e_i :

$$\mathbf{u}^{(n)i_n} = u_i^{(n)i_n} \mathbf{e}_i \tag{9}$$

Derivatives of Displacement Vectors in Orthonormal Basis e_i :

$$\frac{1}{A_{\alpha}}\mathbf{u}_{,\alpha}^{(n)i_{n}} = \lambda_{i\alpha}^{(n)i_{n}}\mathbf{e}_{i}, \qquad \mathbf{\beta}^{(n)i_{n}} = \beta_{i}^{(n)i_{n}}\mathbf{e}_{i}$$
(10)

Strain Parameters of SaS

$$\lambda_{\alpha\alpha}^{(n)i_n} = \frac{1}{A_{\alpha}} u_{\alpha,\alpha}^{(n)i_n} + B_{\alpha} u_{\beta}^{(n)i_n} + k_{\alpha} u_{3}^{(n)i_n}, \qquad \lambda_{\beta\alpha}^{(n)i_n} = \frac{1}{A_{\alpha}} u_{\beta,\alpha}^{(n)i_n} - B_{\alpha} u_{\alpha}^{(n)i_n} \quad (\beta \neq \alpha)$$

$$\lambda_{3\alpha}^{(n)i_n} = \frac{1}{A_{\alpha}} u_{3,\alpha}^{(n)i_n} - k_{\alpha} u_{\alpha}^{(n)i_n}, \qquad B_{\alpha} = \frac{1}{A_{\alpha}} A_{\alpha,\beta} \quad (\beta \neq \alpha) \qquad (11)$$

Linearized Strains of SaS

$$2\varepsilon_{\alpha\beta}^{(n)i_n} = \frac{1}{c_{\beta}^{(n)i_n}} \lambda_{\alpha\beta}^{(n)i_n} + \frac{1}{c_{\alpha}^{(n)i_n}} \lambda_{\beta\alpha}^{(n)i_n}$$
(12)
$$2\varepsilon_{\alpha3}^{(n)i_n} = \beta_{\alpha}^{(n)i_n} + \frac{1}{c_{\alpha}^{(n)i_n}} \lambda_{3\alpha}^{(n)i_n}, \qquad \varepsilon_{33}^{(n)i_n} = \beta_3^{(n)i_n}$$

Remark. Strains (12) exactly represent all rigid-body shell motions in any convected curvilinear coordinate system. It can be proved through results of Kulikov and Carrera (2008)

Displacement Distribution in Thickness Direction

$$I_{i}^{(n)} = \sum_{i_{n}} \mathcal{L}^{(n)i_{n}} u_{i}^{(n)i_{n}}, \quad \theta_{3}^{[n-1]} \le \theta_{3} \le \theta_{3}^{[n]}$$
(13)
$$\mathcal{L}^{(n)i_{n}} = \prod_{j_{n} \ne i_{n}} \frac{\theta_{3} - \theta_{3}^{(n)j_{n}}}{\theta_{3}^{(n)i_{n}} - \theta_{3}^{(n)j_{n}}}$$
(14)

 $L^{(n)i_n}(\theta_3)$ – Lagrange polynomials of degree I_n - 1

Strain Distribution in Thickness Direction

$$\varepsilon_{ij}^{(n)} = \sum_{i_n} \mathcal{L}^{(n)i_n} \varepsilon_{ij}^{(n)i_n}, \qquad \theta_3^{[n-1]} \le \theta_3 \le \theta_3^{[n]}$$
(15)

Presentation for Derivative of Displacements at SaS

$$\beta_{i}^{(n)i_{n}} = \sum_{j_{n}} M^{(n)j_{n}} (\theta_{3}^{(n)i_{n}}) u_{i}^{(n)j_{n}}, \qquad M^{(n)j_{n}} = L_{,3}^{(n)j_{n}}$$
(16)

Derivatives of Lagrange Polynomials at SaS

$$M^{(n)j_n}(\theta_3^{(n)i_n}) = \frac{1}{\theta_3^{(n)j_n} - \theta_3^{(n)i_n}} \prod_{k_n \neq i_n, j_n} \frac{\theta_3^{(n)i_n} - \theta_3^{(n)k_n}}{\theta_3^{(n)j_n} - \theta_3^{(n)k_n}} \text{ for } j_n \neq i_n$$
(17)

$$M^{(n)i_n}(\theta_3^{(n)i_n}) = -\sum_{j_n \neq i_n} M^{(n)j_n}(\theta_3^{(n)i_n})$$

Variational Equation for Analytical Development $\delta \Pi = 0$ (18)

$$\Pi = \frac{1}{2} \iint_{\Omega} \sum_{n} \sum_{i_n} H_{ij}^{(n)i_n} \varepsilon_{ij}^{(n)i_n} A_1 A_2 d\theta_1 d\theta_2 - W$$
(19)

 Π – total potential energy, W- work done by external loads

Stress Resultants

$$H_{ij}^{(n)i_n} = \int_{\theta_3^{[n-1]}}^{\theta_3^{[n]}} \sigma_{ij}^{(n)} L^{(n)i_n} c_1 c_2 d\theta_3$$
(20)

Constitutive Equations

$$\sigma_{ij}^{(n)} = C_{ijkl}^{(n)} \varepsilon_{kl}^{(n)}, \quad \theta_3^{[n-1]} \le \theta_3 \le \theta_3^{[n]}$$
 (21)

 $C_{ijkl}^{(n)}$ – elastic constants of the *n*th layer

Distribution of Elastic Constants in Thickness Direction

$$C_{ijkl}^{(n)} = \sum_{i_n} L^{(n)i_n} C_{ijkl}^{(n)i_n}, \quad \theta_3^{[n-1]} \le \theta_3 \le \theta_3^{[n]}$$
(22)

 $C_{ijkl}^{(n)i_n}$ – values of elastic constants of the *n*th layer on SaS

Presentations for Stress Resultants

$$H_{ij}^{(n)i_n} = \sum_{j_n,k_n} \Lambda^{(n)i_n j_n k_n} C_{ijkl}^{(n)j_n} \varepsilon_{kl}^{(n)k_n}$$
(23)

$$\Lambda^{(n)i_{n}j_{n}k_{n}} = \int_{\theta_{3}^{[n-1]}}^{\theta_{3}^{[n]}} L^{(n)i_{n}} L^{(n)j_{n}} L^{(n)k_{n}} c_{1}c_{2}d\theta_{3}$$
(24)

 c_{α} = 1+ $k_{\alpha}\theta_3$ – components of shifter tensor

Navier-Type Solutions

1. FG Rectangular Plate under Sinusoidal Loading

Table 1. Results for a square plate with a = b = 1 m, a/h = 3 and $\alpha = 0$

<i>I</i> ₁	- u ₁ (0.5)	<i>ū</i> ₃ (0)	σ ₁₁ (0.5)	σ ₁₃ (0)	σ ₃₃ (0)		
3	0.3986372494504680	1.278878243389591	1.999302146854837	0.4977436151168003	0.4752837277628003		
7	0.4358933937131948	1.342554953466513	2.124032428288413	0.7022762666060094	0.4943950643281928		
11	0.4358933942603120	1.342554689543095	2.124018410314048	0.7023022083223538	0.4944039935419638		
15	0.4358933942603121	1.342554689542491	2.124018410193782	0.7023022084767580	0.4944039936052152		
19	0.4358933942603120	1.342554689542491	2.124018410193780	0.7023022084767578	0.4944039936052150		
Exact	0.4358933942603120	1.342554689542491	2.124018410193781	0.7023022084767578	0.4944039936052149		
Exact results have been obtained by authors using Vlasov's closed-form solution (1957)							

Table 2. Results for a FG square plate with a = b = 1 m , a/h = 3 and $\alpha = 0.1$

<i>I</i> ₁	- u ₁ (0.5)	$\overline{u}_3(0)$	σ ₁₁ (0.5)	σ ₁₃ (0)	σ ₃₃ (0)	
3	0.4158336502652652	1.347977241257294	2.073239906807475	0.4983226799021384	0.4596565434470269	
7	0.4536977979133792 1.414636043682		2.193265858989844 0.7020700339720654		0.4877173446168515	
11	0.4536977984142576	1.414635771310962	2.193270258459039	0.7020957676355946	0.4877129579452970	
15	0.4536977984142576	1.414635771310368	2.193270258650021	0.7020957677904856	0.4877129578319663	
19	0.4536977984142575	1.414635771310368	2.193270258650021	0.7020957677904854	0.4877129578319657	
Exact		1.41464				

Exact results have been obtained by Kashtalyan (2004)

Figure 1. Through-thickness distributions of transverse stresses of FG plate with a/h = 1: present analysis (–) for $I_1 = 11$ and Vlasov's closed-form solution (\Box), and Kashtalyan's closed-form solution (\bigcirc)

2. Two-Phase FG Rectangular Plate under Sinusoidal Loading

$$u_{1}^{(n)i_{n}} = \sum_{r,s} u_{1rs}^{(n)i_{n}} \cos \frac{r\pi x_{1}}{a} \sin \frac{s\pi x_{2}}{b}, \quad u_{2}^{(n)i_{n}} = \sum_{r,s} u_{2rs}^{(n)i_{n}} \sin \frac{r\pi x_{1}}{a} \cos \frac{s\pi x_{2}}{b}$$
$$u_{3}^{(n)i_{n}} = \sum_{r,s} u_{3rs}^{(n)i_{n}} \sin \frac{r\pi x_{1}}{a} \sin \frac{s\pi x_{2}}{b}$$

Mori-Tanaka method is used for evaluating material properties of the Metal/Ceramic plate with

$$V_{\rm m} = 1 - V_{\rm c}$$
, $V_{\rm c} = V_{\rm c}^- + (V_{\rm c}^+ - V_{\rm c}^-)(0.5 + z)^{\gamma}$, $z = x_3 / h$, $V_c^- = 0$, $V_c^+ = 0.5$, $\gamma = 2$
where V_c^- , V_c^+ – volume fractions of the ceramic phase on bottom and top surfaces

Dimensionless variables in crucial points

$$\overline{u}_{3} = 100h^{3}E_{m}u_{3}(a/2,a/2,z)/a^{4}p_{0}, \quad \overline{\sigma}_{11} = 10h^{2}\sigma_{11}(a/2,a/2,z)/a^{2}p_{0}$$
$$\overline{\sigma}_{12} = 10h^{2}\sigma_{12}(0,0,z)/a^{2}p_{0}, \quad \overline{\sigma}_{13} = 10h\sigma_{13}(0,a/2,z)/ap_{0}$$
$$\overline{\sigma}_{33} = \sigma_{33}(a/2,a/2,z)/p_{0}, \quad a = b = 1 \text{ m}$$

Table 3. Results for a Metal/Ceramic square plate with a/h = 5

<i>I</i> ₁	$\overline{u}_{3}(0.5)$ $\overline{\sigma}_{11}(0.5)$		σ ₁₂ (0.5)	σ ₁₃ (0)	σ ₃₃ (0.25)	
3	2.491469749603327	2.501382580630834	-1.396928304286311	1.590619403769780	0.7124999023164764	
7	2.555878887142974	2.755727774481453	-1.559557127193362	2.310138127165216	0.8099883632143655	
11	2.555881463601872	2.756212114487591	-1.559952113334130	2.310019719768843	0.8100152119426805	
15	2.555881465062731	2.756213284948613	-1.559953146848270	2.310019478367794	0.8100148488194952	
19	2.555881465064410	2.756213287523302	-1.559953149637165	2.310019478154247	0.8100148486775266	
23	2.555881465064128	2.756213287528492	-1.559953149644632	2.310019478154246	0.8100148486802695	
Batra	2.5559	2.7562	-1.5600	2.3100	0.8100	

Table 4. Results for a Metal/Ceramic square plate with a/h = 10

<i>I</i> ₁	<u>u</u> ₃ (0.5)	σ ₁₁ (0.5)	σ ₁₂ (0.5)	σ ₁₃ (0)	σ ₃₃ (0.25)	
3	2.202396920585996	2.412841121703996	-1.420413278358082	1.601325513211140	0.7367643589818127	
7	2.214798606780433	2.641956852342622	-1.552565106480717	2.323954032297057	0.8117297257693006	
11	2.214801182167397	2.642395937995539	-1.552891720288181	2.323921893370359	0.8123146819945828	
15	2.214801183896660	2.642396888131435	-1.552892592322280	2.323921660091405	0.8123134893082843	
19	2.214801183898813	2.642396890147046	-1.552892594687380	2.323921659883698	0.8123134883311503	
23	2.214801183898711	2.642396890150937	-1.552892594693696	2.323921659883744	0.8123134883405911	
Batra	2.2148	2.6424	-1.5529	2.3239	0.8123	

Exact Geometry Solid-Shell Element Formulation

Biunit square in (ξ_1, ξ_2) -space mapped into the exact geometry four-node shell element in (x_1, x_2, x_3) -space

Displacement Interpolation

$$u_{i}^{(n)i_{n}} = \sum_{r=1}^{4} N_{r} u_{ir}^{(n)i_{n}}$$

$$u_{ir}^{(n)i_{n}} = u_{i}^{(n)i_{n}} (\widetilde{P}_{r})$$
(25)

Assumed Strain Interpolation

$$\varepsilon_{ij}^{(n)i_n} = \sum_{r=1}^4 N_r \varepsilon_{ijr}^{(n)i_n}$$

$$\varepsilon_{ijr}^{(n)i_n} = \varepsilon_{ij}^{(n)i_n} \left(\widetilde{\mathsf{P}}_r\right)$$
(26)

 $N_r(\xi_1, \xi_2)$ - bilinear shape functions

 $\xi_{\alpha} = (\theta_{\alpha} - c_{\alpha})/\ell_{\alpha}$ - normalized surface coordinates

Assumed Stress Resultant Interpolation

$$H_{11}^{(n)i_n} = \Phi_1^{(n)i_n} + \xi_2 \Phi_7^{(n)i_n}, \qquad H_{22}^{(n)i_n} = \Phi_2^{(n)i_n} + \xi_1 \Phi_8^{(n)i_n}$$

$$H_{33}^{(n)i_n} = \Phi_3^{(n)i_n} + \xi_1 \Phi_9^{(n)i_n} + \xi_2 \Phi_{10}^{(n)i_n}, \qquad H_{12}^{(n)i_n} = \Phi_4^{(n)i_n}$$
(27)

$$H_{13}^{(n)i_n} = \Phi_5^{(n)i_n} + \xi_2 \Phi_{11}^{(n)i_n}, \qquad H_{23}^{(n)i_n} = \Phi_6^{(n)i_n} + \xi_1 \Phi_{12}^{(n)i_n}$$

Assumed Displacement-Independent Strain Interpolation

$$e_{11}^{(n)i_n} = \Psi_1^{(n)i_n} + \xi_2 \Psi_7^{(n)i_n}, \qquad e_{22}^{(n)i_n} = \Psi_2^{(n)i_n} + \xi_1 \Psi_8^{(n)i_n}$$

$$e_{33}^{(n)i_n} = \Psi_3^{(n)i_n} + \xi_1 \Psi_9^{(n)i_n} + \xi_2 \Psi_{10}^{(n)i_n}, \qquad e_{12}^{(n)i_n} = \Psi_4^{(n)i_n}$$

$$e_{13}^{(n)i_n} = \Psi_5^{(n)i_n} + \xi_2 \Psi_{11}^{(n)i_n}, \qquad e_{23}^{(n)i_n} = \Psi_6^{(n)i_n} + \xi_1 \Psi_{12}^{(n)i_n}$$
(28)

Hu-Washizu Mixed Variational Equation

$$\iint_{\Omega} \sum_{n} \sum_{i_{n}} \left[\delta\left(\mathbf{e}^{(n)i_{n}}\right)^{\mathsf{T}} \left(\mathbf{H}^{(n)i_{n}} - \sum_{j_{n},k_{n}} \Lambda^{(n)i_{n}j_{n}k_{n}} \mathbf{C}^{(n)j_{n}} \mathbf{e}^{(n)k_{n}}\right) + \delta\left(\mathbf{H}^{(n)i_{n}}\right)^{\mathsf{T}} \left(\mathbf{e}^{(n)i_{n}} - \mathbf{\epsilon}^{(n)i_{n}}\right) - \delta\left(\mathbf{\epsilon}^{(n)i_{n}}\right)^{\mathsf{T}} \mathbf{H}^{(n)i_{n}}\right] A_{1} A_{2} d\theta_{1} d\theta_{2}$$

$$+ \iint_{\Omega} \left(c_{1}^{+} c_{2}^{+} p_{i}^{+} \delta u_{i}^{+} - c_{1}^{-} c_{2}^{-} p_{i}^{-} \delta u_{i}^{-}\right) A_{1} A_{2} d\theta_{1} d\theta_{2} + \delta W_{\Sigma} = 0$$

$$(29)$$

 W_{Σ} – work done by external loads applied to edge surface Σ

$$\boldsymbol{\varepsilon}^{(n)i_n} = \begin{bmatrix} \varepsilon_{11}^{(n)i_n} & \varepsilon_{22}^{(n)i_n} & \varepsilon_{33}^{(n)i_n} & 2\varepsilon_{12}^{(n)i_n} & 2\varepsilon_{23}^{(n)i_n} \end{bmatrix}^{\mathsf{T}} \\ \boldsymbol{e}^{(n)i_n} = \begin{bmatrix} e_{11}^{(n)i_n} & e_{22}^{(n)i_n} & e_{33}^{(n)i_n} & 2e_{12}^{(n)i_n} & 2e_{23}^{(n)i_n} & 2e_{23}^{(n)i_n} \end{bmatrix}^{\mathsf{T}} \\ \boldsymbol{H}^{(n)i_n} = \begin{bmatrix} H_{11}^{(n)i_n} & H_{22}^{(n)i_n} & H_{33}^{(n)i_n} & H_{12}^{(n)i_n} & H_{23}^{(n)i_n} & H_{23}^{(n)i_n} \end{bmatrix}^{\mathsf{T}} \end{aligned}$$
(30)

Finite Element Equations

$$\mathbf{KU} = \mathbf{F} \tag{32}$$

K – element stiffness matrix of order $12N_{SaS} \times 12N_{SaS}$, where $N_{SaS} = \sum_{n} I_n - N + 1$ **U** = $\begin{bmatrix} \mathbf{U}_1^{\mathsf{T}} \, \mathbf{U}_2^{\mathsf{T}} \, \, \mathbf{U}_3^{\mathsf{T}} \, \, \mathbf{U}_4^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$ – element displacement vector, \mathbf{U}_r – nodal displacement vector (r = 1, 2, 3, 4)

3D Finite Element Solutions 1. Three-Layer Rectangular Plate under Sinusoidal Loading

Dimensionless variables in crucial points

 $\overline{u}_{3} = 100E_{T}h^{3}u_{3}(a/2, b/2, z)/a^{4}p_{0}, \quad \overline{\sigma}_{11} = h^{2}\sigma_{11}(a/2, b/2, z)/a^{2}p_{0}$ $\overline{\sigma}_{22} = 10h^{2}\sigma_{22}(a/2, b/2, z)/a^{2}p_{0}, \quad \overline{\sigma}_{12} = 10h^{2}\sigma_{12}(0, 0, z)/a^{2}p_{0}$ $\overline{\sigma}_{13} = 10h\sigma_{13}(0, b/2, z)/ap_{0}, \quad \overline{\sigma}_{23} = 10h\sigma_{23}(a/2, 0, z)/ap_{0}$ $\overline{\sigma}_{33} = \sigma_{33}(a/2, b/2, z)/p_{0}, \quad z = x_{3}/h$ Lamination scheme: [0/90/0] and $[\frac{1}{3}h/\frac{1}{3}h/\frac{1}{3}h]$

 $E_{\rm L} = 25E_{\rm T}, \quad G_{\rm LT} = 0.5E_{\rm T}, \quad G_{\rm TT} = 0.2E_{\rm T}, \quad E_{\rm T} = 10^6, \quad v_{\rm LT} = v_{\rm TT} = 0.25, \quad b = 3a, \quad a = 1$

Table 5. Results for a three-layer rectangular plate with a/h = 4 using a regular 64×64 mesh

Formulation	ū ₃ (0)	σ ₁₁ (-0.5)	σ ₁₁ (0.5)	σ ₂₂ (-1/6)	σ ₂₂ (1/6)	10 σ ₁₂ (-0.5)	10 σ ₁₂ (0.5)	σ ₁₃ (0)	10 0 23(0)	σ ₃₃ (0.5)
<i>I_n</i> = 3	2.79852	-1.08234	1.12692	-1.18341	1.07900	2.77774	-2.65861	-3.47183	-2.93050	1.05038
<i>I_n</i> = 4	2.82122	-1.09941	1.14453	-1.19290	1.08778	2.80636	-2.68763	-3.51076	-3.33734	1.02052
<i>I_n</i> = 5	2.82133	-1.09920	1.14430	-1.19290	1.08778	2.80654	-2.68782	-3.51073	-3.33748	1.00108
<i>I_n</i> = 6	2.82134	-1.09919	1.14429	-1.19291	1.08778	2.80655	-2.68783	-3.51074	-3.33658	1.00014
I _n = 7	2.82134	-1.09919	1.14429	-1.19291	1.08778	2.80655	-2.68783	-3.51074	-3.33658	0.99987
Exact SaS	2.8211	-1.0992	1.1443	-1.1929	1.0878	2.8065	-2.6878	-3.5108	-3.3365	1.0000
Pagano	2.82	-1.10	1.14	-1.19	1.09	2.81	-2.69	-3.51	-3.34	1.00

Figure 2. Through-thickness distributions of displacements and stresses for three-layer rectangular plate for $I_n = 7$ using a regular 64×64 mesh; exact SaS solution (\bigcirc) and Pagano's closed form solution (\Box)

2. Hyperbolic Composite Shell under Inner Pressure $p_3^- = -p_0 \cos 4\theta_2$

Single-layer graphite/epoxy hyperbolic shell with r = 7.5, R = 15, a = 20, $E_1 = 40 E$, $E_2 = E_3 = E$, $G_{12} = G_{13} = G_{23} = 0.6E$, $E = 10^6$ and $v_{12} = v_{13} = v_{23} = 0.25$ is modeled by 64×64 mesh $\overline{\sigma}_{13} = 10a\sigma_{13}(0,0,z)/hp_0$, $\overline{\sigma}_{23} = 10a\sigma_{23}(\pi/8,a,z)/hp_0$, $\overline{\sigma}_{33} = \sigma_{33}(0,a,z)/p_0$, $z = \theta_3/h$

Conclusions

- An efficient concept of sampling surfaces inside the shell body has been proposed. This concept permits the use of 3D constitutive equations and leads for the large number of sampling surfaces to numerical solutions for layered composite shells which asymptotically approach the 3D solutions of elasticity
- A robust exact geometry four-node solid-shell element has been developed which allows the solution of 3D elasticity problems for thick and thin shells of arbitrary geometry using only displacement degrees of freedom

Thanks for your attention!