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Abstract. This paper focuses on implementation of the sampling surfaces (SaS) method for 
the 3D vibration analysis of laminated piezoelectric plates. The SaS formulation is based on 
choosing inside the layers the arbitrary number of SaS parallel to the middle surface to 
introduce the displacements and electric potentials of these surfaces as basic plate variables. 
Such choice of unknowns allows the presentation of the laminated piezoelectric plate 
formulation in a very compact form. The feature of the proposed approach is that all SaS are 
located inside the layers at Chebyshev polynomial nodes that improves the convergence of the 
SaS method significantly. The use of outer surfaces and interfaces is avoided that makes 
possible to minimize uniformly the error due to Lagrange interpolation. Therefore, the strong 
SaS formulation based on direct integration of the equations of motion and the charge 
equation can be applied efficiently to the obtaining of exact solutions for laminated 
piezoelectric plates, which asymptotically approach the 3D solutions of piezoelectricity as the 
number of SaS tends to infinity. 

1 INTRODUCTION 
The exact vibration analysis of laminated piezoelectric plates was first carried out by 

Heyliger and Brooks [1], and Heyliger and Saravanos [2] using the Pagano approach. The 
most popular state space approach was utilized for the free vibration of simply supported 
electroelastic plates in works [3-7]. Messina and Carrera [8] proposed to employ the transfer 
matrix method to solve the ordinary differential equations in terms of the displacements and 
electric potential derived from the system of partial differential equations through the 
separating variable procedure. The dynamic response of laminated piezoelectric plates by a 
Taylor series expansion through the thickness was studied in papers [9-11]. The SaS approach 
was also used for the free vibration analysis of piezolaminated plates [12]. 

The SaS method [13] has been applied effectively to the 3D stress analysis of laminated 
piezoelectric structures by Kulikov and Plotnikova [14-17]. According to this method, we 
choose the arbitrary number of SaS throughout the layers parallel to the middle surface and 
located at Chebyshev polynomial nodes in order to introduce the displacements and electric 
potentials of these surfaces as basic plate unknowns. Such choice of unknowns with the 
consequent use of Lagrange polynomials in the through-thickness distributions of 
displacements, strains, electric potential and electric field leads to a robust laminated 
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piezoelectric plate formulation. The above works are based on the variational SaS 
formulation, which requires including the interfaces into a set of SaS. However, it is 
important to take all SaS located at Chebyshev polynomial nodes due to the convergence 
criterion [18]. 

The present paper is intended to extend the variational SaS formulation for the free 
vibration of laminated piezoelectric plates [12] to the strong SaS formulation. The latter is 
based on the choice of all SaS inside the layers at Chebyshev polynomial nodes and direct 
integration of the equations of motion and the charge equation. The use of interfaces is 
avoided that allows one to minimize uniformly the error due to the higher-order Lagrange 
interpolation [19-22]. Thus, the strong SaS formulation can be applied efficiently to the 3D 
vibration analysis of piezolaminated plates. 

2 BASIC ASSUMPTIONS 
Consider a laminated piezoelectric plate of the thickness h. Let the middle surface   be 

described by Cartesian coordinates 1x  and 2x . The coordinate 3x  is oriented in the thickness 
direction. According to the SaS concept, we choose inside the nth layer nI  SaS 

nInnn )(2)(1)( ,...,,   parallel to the middle surface (see Figure 1), where Nn ,...,2,1 ; N is the 
number of layers and 3nI . The transverse coordinates of SaS of the nth layer located at 
Chebyshev polynomial nodes (roots of the Chebyshev polynomial of order nI ) are written as 
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where 2/]0[
3 hx  , 2/][

3 hx N  ; ][
3
mx  are the transverse coordinates of interfaces ][m ; 

]1[
3

][
3

 nn
n xxh  is the thickness of the nth layer; the index 1,...,2,1  Nm  identifies the 

belonging of any quantity to the interface; the indices nnn Iji ,...,2,1,   identify the belonging 
of any quantity to the SaS of the nth layer. 

 
Figure 1: Geometry of the laminated piezoelectric plate 
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The through-thickness SaS approximations can be expressed as 
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are the displacements, strains, stresses, electric potential, electric field and electric 
displacements of SaS of the nth layer nin)(Ω ; )( 3

)( xL nin  are the Lagrange basis polynomials of 
degree 1nI  corresponding to the nth layer: 

.)(
3

)(
3

)(
33)( 

 



nn

nn

n
n

ij
jnin

jn
in

xx
xxL                                                      (3) 

3 STRONG SAS FORMULATION 
For simplicity, we consider the case of linear piezoelectric materials given by 
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where )(n
ijklC , )(n

kije  and  n
ik  are the elastic, piezoelectric and dielectric constants of the nth layer. 

Here, the summation on repeated Latin indices is implied. 
The equations of motion and the charge equation of the laminated piezoelectric plate are 

written as 

,)()(
,

n
in

n
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,0)(
, n
iiD                                                                  (7) 

where nρ  is the mass density of the nth layer; )(n
iu  is the second order derivative of 

displacements with respect to time t; the symbol   i,  stands for the partial derivatives with 
respect to coordinates ix . 

The boundary conditions on bottom and top surfaces are defined as 
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where  Qpw ii ,,,   and  Qpw ii ,,,   are the prescribed displacements, surface tractions, 
electric potentials and electric charges at the bottom and top surfaces. 

The continuity conditions at interfaces are 
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Satisfying equations of motion (6) and charge equation (7) at inner layer points nmnx )(
3  by 

using the SaS approximations (2), the following differential equations are obtained: 
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where nn inin LM )(
3,

)(   are the derivatives of the Lagrange basis polynomials whose values at 
SaS nmn)(Ω  are presented in papers [14, 15]; 1,...,3,2  nn Im . 

Next, we satisfy the boundary conditions on bottom and top surfaces 
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and the continuity conditions at interfaces 
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Thus, the proposed strong SaS formulation deals with SaS4N  governing equations (12)-(17) 
for obtaining the same number of SaS displacements nin

iu )(  and SaS electric potentials nin)( , 
where NIIIN  ...21SaS  is the total number of SaS. These differential and algebraic 
equations have to be solved to describe the dynamic response of the laminated piezoelectric 
plate. 

4 FREE VIBRATION OF SIMPLY SUPPORTED PIEZOELECTRIC PLATE 
In this section, we consider a laminated piezoelectric rectangular plate with simply 

supported edges. The boundary conditions on the edges are written as 

,and0at0 11
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11 axxuu nnnn                                    (18) 
,and0at0 22
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3
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1

)(
22 bxxuu nnnn    

where a and b are the length and width of the plate. 
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To satisfy boundary conditions (18), we seek the analytical solution of the problem in the 
following form: 
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where bssarr /,/   ; r and s are the half-wave numbers in x1 and x2 directions; nin
irsu )(  

and nin
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)(   are the amplitudes of displacements and electric potentials of SaS; rs  is the 
circular frequency; 1i   is the imaginary unit. 

Using (19) in relations between the SaS variables [12], one finds 
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In the case of the piezoelectric material with 4mm symmetry, the constitutive equations (4) 
and (5) can be written in terms of SaS variables 
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For the vibration analysis of piezoelectric plates with stress-free and voltage-free external 
surfaces, the boundary conditions (14) and (15) are used with 0

ip  and 0 . Substituting 
(19)-(23) in governing equations (12)-(17), we arrive at the homogeneous system of linear 
equations 
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where uu
rsK , u

rsK , T)(  u
rs

u
rs KK   and 

rsK  are the mechanical, piezoelectric and dielectric 
stiffness matrices; rsM is the mass matrix; rsU  is the SaS displacement vector of order SaS3N ; 

rsΦ  is the SaS electric potential vector of order SaSN  given by 
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Eliminating the vector rsΦ  from (24), one gets 
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Inserting (27) in the first row of (24), the following reduced homogeneous system is obtained 
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evaluated by using the linear system (28). 

5 FORCED VIBRATION OF SIMPLY SUPPORTED PIEZOELECTRIC PLATE 
Here, we study forced vibrations of the simply supported laminated piezoelectric 

rectangular plate with boundary conditions on the bottom and top surfaces 
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Consider time-harmonic loading distributed on the top surface as follows: 
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where   is the forcing frequency. 
To satisfy boundary conditions (18), we seek the analytical solution of the problem in the 

following form: 
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where nin
iu )(
0  and nin)(

0  are the amplitudes of displacements and electric potentials of SaS of 
the nth layer. 

The described algorithm was performed with the Symbolic Math Toolbox, which 
incorporates symbolic computations into the numeric environment of MATLAB. This makes 
possible to obtain the analytical solutions for free and forced vibrations of the simply 
supported laminated piezoelectric rectangular plate in the framework of the SaS formulation, 
which asymptotically approaches the 3D exact solutions of electroelasticity as the number of 
SaS goes to infinity. 

As a numerical example, we consider a simply supported two-ply square plate [0/90] made 
of the graphite epoxy composite and covered with PZT-4 piezoelectric layers at the bottom 
and at the top. Therefore, we deal here with a hybrid four-layer plate [PZT/0/90/PZT] with 
ply thicknesses [0.25h/0.25h/0.25h/0.25h]. The material properties of the PZT-4 [12] 
polarized in the thickness direction are E1=E2=81.3 GPa, E3=64.5 GPa, G12=30.6 GPa, 
G13=G23=25.6 GPa, ν12=0.329, ν13=ν23=0.432, e311=e322=-5.2 C/m2, e333=15.08 C/m2, 
e113=e223=12.72 C/m2,  2211 13.06 nF/m, 33 11.51 nF/m and ρ=7600 kg/m3. The material 
properties of the graphite epoxy [12] are E1=172.5 GPa, E2=E3=6.9 GPa, G12=G13=3.45 GPa, 
G23=1.38 GPa, ν12=ν13=0.25, ν23=0.35, 11 0.031 nF/m,  3322 0.027 nF/m and ρ=1800 
kg/m3. 

To evaluate the results effectively, we introduce the dimensionless frequency [12] 

hEa // 00
2                                                          (34) 

and dimensionless basic variables at crucial points as functions of the thickness coordinate 

,/),2/,2/(,/),2/,2/(10 011113
9
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,/),2/,2/(,/),2/,0( 0333301313 pzaapza                               (35) 

,/,/),2/,2/(10,/),2/,2/( 3030
9

30 hxzapzaaDDzaa    

where a=1 m, h=0.1 m, E0=81.3 GPa, ρ0=7600 kg/m3, p0=1 Pa and 0 1 V. 
Figures 2 and 3 display the distributions of displacements, stresses, electric potential and 

electric displacement (35) through the thickness of the plate for the forcing frequencies 
00 95.0,8.0,0    and 005.1   using seven SaS inside each layer, where 0 6.0932 is 

the fundamental frequency in the case of stress-free and voltage-free external surfaces [12]. It 
is seen that the boundary conditions on bottom and top surfaces for the transverse stresses and 
the continuity conditions at interfaces for the transverse stresses and electric displacement are 
satisfied correctly. Note also that the displacements and stresses become larger as the forcing 
frequency approaches the fundamental frequency. 
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Figure 2: Through-thickness distributions of transverse displacement, stresses, electric potential 
and electric displacement for the four-layer plate subjected to mechanical loading (problem A) 



607

G. M. Kulikov, N. P. Merkusheva and S.V. Plotnikova 
 

  9 

 
Figure 3: Through-thickness distributions of transverse displacement, stresses, electric potential 

and electric displacement for the four-layer plate subjected to electric loading (problem B) 
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